Soar high!

Algebra Level 5

Let x x , y y , and z z be non-negative real numbers such that x + y + z = 1 x+y+z=1 . If the maximum value of x 2 y + y 2 z + z 2 x x^2y+y^2z+z^2x is m n \dfrac{m}{n} , where m m and n n are positive coprime integers, what is the value m + n m+n ?


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 1, 2017

Let f ( x , y , z ) = x 2 y + y 2 z + z 2 x f(x,y,z) = x^2y + y^2z + z^2x . Note that f ( x , y , z ) f ( x , z , y ) = ( x y ) ( x z ) ( y z ) f(x,y,z) - f(x,z,y) \; = \; (x-y)(x-z)(y-z) Since we can permute x , y , z x,y,z cyclically without changing f ( x , y , z ) f(x,y,z) , we can assume without loss of generality that x y , z 0 x \ge y,z \ge 0 . The above identity then shows us that the maximum value of f ( x , y , z ) f(x,y,z) will be obtained when x y z 0 x \ge y \ge z \ge 0 (since, in that case, f ( x , y , z ) f ( x , z , y ) 0 f(x,y,z) - f(x,z,y) \ge 0 ). Since f ( x + z , y , 0 ) f ( x , y , z ) = x z ( y z ) + ( x y ) ( y z ) + y z 2 0 x y z 0 , f(x+z,y,0) - f(x,y,z) \; = \; xz(y-z) + (x-y)(y-z) + yz^2 \; \ge\; 0 \hspace{2cm} x \ge y \ge z \ge 0\;, we see that the largest value of f ( x , y , z ) f(x,y,z) is obtained when x y z = 0 x \ge y \ge z = 0 . Thus we simply need to maximize f ( x , 1 x , 0 ) = x 2 ( 1 x ) 0 x 1 f(x,1-x,0) \; = \; x^2(1-x) \hspace{2cm} 0 \le x \le 1 and this maximum is achieved when x = 2 3 x=\tfrac23 , yielding a maximum of 4 27 \tfrac{4}{27} . This makes the answer 31 \boxed{31} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...