So...It's not the gamma function?

Calculus Level 5

Let I ( n , a ) = 0 a x n e x d x I(n,a)=\int_{0}^{a}x^ne^{-x}dx

Also define, T ( a ) = lim n ( 1 I ( n , a ) n ! ) e a T(a)=\lim_{n\rightarrow \infty}(1-\frac{I(n,a)}{n!})e^a

Then find the value of 0 2 T ( x ) d x \int_{0}^{2}T(x)dx (correct upto 3 places after the decimal point)


The answer is 6.389.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mvs Saketh
Feb 18, 2015

Ok, my way is this,

using integration by parts

x n e x d x = x n e x + n x n 1 e x a g a i n u s i n g I B P x n e x + n x n 1 e x = x n e x n x n 1 e x + n ( n 1 ) x n 2 e x \displaystyle \int { { x }^{ n }{ e }^{ -x }dx } \quad =\quad -{ x }^{ n }e^{ -x }+\int { n{ x }^{ n-1 }{ e }^{ -x } } \quad \\ \\ again\quad using\quad IBP\\ \\ -{ x }^{ n }e^{ -x }+\int { n{ x }^{ n-1 }{ e }^{ -x } } \quad =\quad { -x }^{ n }e^{ -x }-\quad n{ x }^{ n-1 }{ e }^{ -x }\quad +\quad \int { n{ (n-1)x }^{ n-2 }{ e }^{ -x } } \\

in general

proceeding till power of x is 0, and putting limits

I ( n , a ) = r = 0 n n ! ( n r ) ! a n r e a + n ! \displaystyle {I(n,a)\quad =\quad -\sum _{ r=0 }^{ n }{ \frac { n! }{ (n-r)! } } { a }^{ n-r }{ e }^{ -a }\quad +\quad n!}

now dividing by factorial of n and limiting,

we use the fact tha all terms having a defined numerator and an n term in denominator will tend to 0,

except the one that doesnt namely at r=n

and we have

I ( n , a ) n ! = r = 0 n 1 ( n r ) ! a n r e a + 1 n > I ( n , a ) n ! = r = 0 n 1 ( n r ) ! a n r e a + 1 = e a + 1 ( 1 + e a 1 ) e a = e a = T ( a ) 0 2 e a d a = a n s w e r \displaystyle{\frac { I(n,a) }{ n! } \quad =\quad -\sum _{ r=0 }^{ n }{ \frac { 1 }{ (n-r)! } } { a }^{ n-r }{ e }^{ -a }\quad +\quad 1\\ \\ n-->\quad \infty \quad \frac { I(n,a) }{ n! } \quad =\quad -\sum _{ r=0 }^{ n }{ \frac { 1 }{ (n-r)! } } { a }^{ n-r }{ e }^{ -a }\quad +\quad 1\quad =\quad -{ e }^{ -a }\quad +\quad 1\\ \\ \\ (1+{ e }^{ -a }-1){ e }^{ a }=\quad { e }^{ a }\quad =\quad T(a)\\ \\ \int _{ 0 }^{ 2 }{ { e }^{ a }da } =\quad answer}

hope i am right

I also solved it using by parts. Nice solution!!

Rajorshi Chaudhuri - 6 years, 3 months ago

Thanks for taking the time to write a solution :)

Shashwat Shukla - 6 years, 3 months ago
Shashwat Shukla
Feb 17, 2015

I'll post a full solution if no else does so in the near future.

My claim is as follows: ( 1 I ( n , a ) n ! ) e a = 1 + a 1 ! + a 2 2 ! + . . . a n n ! (1-\frac{I(n,a)}{n!})e^a=1+\frac{a}{1!}+\frac{a^2}{2!}+...\frac{a^n}{n!} This holds for all ( n , a ) (n,a) and you can prove it by establishing a recursive relation between I ( n , a ) I(n,a) and I ( n 1 , a ) I(n-1,a) .

If we let n tend to infinity we get: T ( a ) = e a T(a)=e^a

What's interesting here is that, I ( n , a ) I(n,a) has two parameters n n and a a .

Letting a a tend to infinity gives the gamma function and thus, an expression for n!

But if we let the other parameter tend to infinity, we get an expression for a seemingly unrelated quantity: e a e^a

The final answer becomes 0 2 e x d x = e 2 1 \quad \int_{0}^{2}e^xdx=e^2-1

Tries to represent e x e^{x} in a more complicated and obscure manner <fails> Nice question, was fun to do it.

Raghav Vaidyanathan - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...