Solid angle subtended by an infinite cylinder

Geometry Level 3

Suppose you have an cylinder of infinite length and of radius 1, with its axis coincident with the z z -axis. Find the solid angle (in steradians) that the cylinder subtends at the point p 0 = ( 5 , 0 , 0 ) p_0 = (5, 0, 0) .

Note: It is possible to find the exact value (closed form) of the solid angle in this particular problem.

Inspired by this problem


The answer is 0.805431683.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hosam Hajjir
May 26, 2019

The formula for calculating the solid angle is

Ω = A ( n ( p 0 p ) ) p 0 p 3 d A \Omega = \displaystyle \iint_{A} \dfrac{(n \cdot (p_0 - p) )}{ | p_0 - p |^3 } dA

where p p is the position vector of a point on the surface of the object (the infinite cylinder in this case), p 0 p_0 is the given point where we want to calculate the solid angle, n n is the unit normal vector pointing outward of the object, and A A is the region on the object that satisfies n ( p 0 p ) 0 n \cdot ( p_0 - p ) \ge 0 .

Using cylindrical coordinates, a point on the surface of the given cylinder is given by p ( t , z ) = ( cos t , sin t , z ) p ( t, z ) = ( \cos t, \sin t , z ) , and the unit outward normal unit vector is n = ( cos t , sin t , 0 ) n = ( \cos t, \sin t, 0 ) . The differential area d A = d t d z dA = dt \hspace{4pt} dz . The dot product in the numerator is n ( p 0 p ) = ( cos t , sin t , 0 ) ( 5 cos t , sin t , z ) = 5 cos t 1 n \cdot ( p_0 - p) = (\cos t, \sin t, 0) \cdot (5 - \cos t, -\sin t, -z) = 5 \cos t - 1 . Therefore, the range for the variable t t is [ α , α ] [ - \alpha , \alpha ] where α = cos 1 1 5 \alpha = \cos^{-1} \dfrac{1}{5} . The integral becomes,

Ω = z = α α 5 cos t 1 ( 26 10 cos t + z 2 ) 3 2 d t d z \Omega = \displaystyle \int_{z=-\infty}^{\infty} \int_{ - \alpha }^{ \alpha } \dfrac{ 5 \cos t - 1}{ (26 - 10 \cos t + z^2)^{\frac{3}{2}} } dt \hspace{4pt} dz

Performing the integral with respect to z z first, the above integral becomes,

Ω = α α ( 5 cos t 1 ) 13 5 cos t d t \Omega = \displaystyle \int_{ - \alpha }^{ \alpha } \dfrac{ (5 \cos t - 1)}{ 13 - 5 \cos t } dt

Subtracting and adding 12 {12} in the numerator and dividing out, this becomes,

Ω = α α 1 + 12 13 5 cos t d t \Omega =\displaystyle \int_{ - \alpha }^{ \alpha } -1 + \dfrac{ 12 }{ 13 - 5 \cos t } dt

For the last part, we use the substitution u = tan ( t 2 ) u = \tan(\dfrac{t}{2}) , then d u = 1 2 ( u 2 + 1 ) d t du = \dfrac{1}{2} (u^2 + 1) dt , and cos t = 1 u 2 1 + u 2 \cos t = \dfrac{1 - u^2}{1 + u^2} .

So that, 12 13 5 cos t d t = 24 8 + 18 u 2 = 4 3 d u ( 2 3 ) 2 + u 2 = 2 tan 1 3 2 u \displaystyle \int \dfrac{12}{13 - 5 \cos t } dt = \displaystyle \int \dfrac{24}{ 8 + 18 u^2 } = \dfrac{4}{3} \displaystyle \int \dfrac{du }{ (\dfrac{2}{3})^2 + u^2} = 2 \tan^{-1} \dfrac{3}{2} u

Substituting the limits in the last expression yields our final result

Ω = 4 tan 1 ( 3 2 tan ( 1 2 α ) ) 2 α 0.805431683 \Omega = 4 \tan^{-1} ( \frac{3}{2} \tan( \frac{1}{2} \alpha ) ) - 2 \alpha \approx \boxed{0.805431683}

Steven Chase
May 25, 2019

Conceptualize a unit sphere around the given point P \vec{P} . Calculate the solid angle as follows:

Ω = 0 π π / 2 3 π / 2 M ( θ , ϕ ) s i n ϕ d θ d ϕ \large{\Omega = \int_0^{\pi} \int_{\pi/2}^{3 \pi/2} M(\theta,\phi) \, sin \phi \, d\theta \, d\phi}

To calculate M ( θ , ϕ ) M(\theta,\phi) , project the vector u \vec{u} (defined below) from P \vec{P} through space and see if it intersects the infinite cylinder:

u x = c o s θ s i n ϕ u y = s i n θ s i n ϕ ( P x + α u x ) 2 + ( P y + α u y ) 2 = 1 A = u x 2 + u y 2 B = 2 P x u x + 2 P y u y C = P x 2 + P y 2 1 M ( θ , ϕ ) = 1 for B 2 4 A C M ( θ , ϕ ) = 0 otherwise \large{ u_x = cos \theta \, sin \phi \\ u_y = sin \theta \, sin \phi \\ (P_x + \alpha \, u_x)^2 + (P_y + \alpha \, u_y)^2 = 1 \\ A = u_x^2 + u_y^2 \\ B = 2 P_x \, u_x + 2 P_y \, u_y \\ C = P_x^2 + P_y^2 - 1 \\ M(\theta,\phi) = 1 \,\,\,\, \text{for} \,\, B^2 \geq 4 A C \\ M(\theta,\phi) = 0 \,\,\,\, \text{otherwise} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...