Solution needed

Calculus Level 4

Let f f be a differentiable function satisfying the condition f ( x y ) = f ( x ) f ( y ) f\left(\frac{x}{y}\right) = \dfrac{f(x)}{f(y)} for all x , y x,y .

If f ( 1 ) = 2 f'(1)=2 ,

Find f ( x ) f'(x) .


Details and Assumptions :-

  • f ( x ) = d ( f ( x ) ) d x f'(x)=\dfrac{d(f(x))}{dx} and f ( k ) f'(k) is the value of d ( f ( x ) ) d x \frac{d(f(x))}{dx} at x = k x=k .
f ( x ) x \dfrac{f(x)}{x} 2 x f ( x ) 2xf(x) 2 f ( x ) 2f(x) 2 f ( x ) x \dfrac{2f(x)}{x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Raut
Jul 24, 2015

f ( x y ) = f ( x ) f ( y ) \displaystyle f\left( \frac{x}{y}\right)=\dfrac{f(x)}{f(y)}

Put x = y x=y to obtain f ( 1 ) = 1 f(1)=1 .

Now take partial derivative w.r.t. x x , i.e. consider y y as a constant.

1 y f ( x y ) = f ( x ) f ( y ) \displaystyle \therefore \frac{1}{y} \cdot f'\left(\frac{x}{y}\right) = \dfrac{f'(x)}{f(y)}

Take partial derivative w.r.t. y y , i.e. consider x x as a constant.

x y 2 f ( x y ) = f ( x ) f ( y ) f ( y ) f ( y ) \displaystyle \therefore \frac{-x}{y^2} f'\left(\frac{x}{y}\right) = \dfrac{-f(x)f'(y)}{f(y)f(y)}

Dividing the second equation by first equation,

x y 2 f ( x y ) 1 y f ( x y ) = f ( x ) f ( y ) f ( y ) f ( y ) f ( x ) f ( y ) \displaystyle \dfrac{\frac{-x}{y^2}f'\left(\frac{x}{y}\right)}{\frac{1}{y}f'\left( \frac{x}{y}\right)} = \dfrac{\frac{-f(x)f'(y)}{f(y)f(y)}}{\frac{f'(x)}{f(y)}}

x y = f ( x ) f ( y ) f ( y ) f ( x ) \therefore \dfrac{x}{y} = \dfrac{f(x)f'(y)}{f(y)f'(x)}

x f ( x ) f ( x ) = y f ( y ) f ( y ) \therefore \dfrac{x f'(x)}{f(x)}=\dfrac{yf'(y)}{f(y)}

Now just put y = 1 y=1 , we get

x f ( x ) f ( x ) = 1 × 2 1 = 2 \therefore \dfrac{xf'(x)}{f(x)}=\dfrac{1\times 2}{1} =2

f ( x ) = 2 f ( x ) x \therefore \boxed{f'(x)=\dfrac{2f(x)}{x}}

@jaikirat sandhu , a solution, as you had asked. :)

Aditya Raut - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...