Solution of Cubes.

Algebra Level 3

How many triplets (x,y,z) in positive real numbers satisfy the following equations:

3 x 3 + 4 y 3 + 5 z 3 = 30 3x^{3}+4y^{3}+5z^{3} = 30 & 3 x 3 y 3 z 3 = 50 3x^{3}y^{3}z^{3} = 50


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 27, 2015

It is given that:

{ 3 x 3 + 4 y 3 + 5 3 = 30 . . . ( 1 ) 3 x 3 y 3 z 3 = 50 . . . ( 2 ) \begin{cases} 3x^3+4y^3+5^3 = 30 & ... (1) \\ 3x^3 y^3 z^3 = 50 & ...(2) \end{cases}

Since x , y , z > 0 x,y,z>0 , we can use AM-GM inequality.

3 x 3 + 4 y 3 + 5 3 3 60 x 3 y 3 z 3 3 30 3 60 x 3 y 3 z 3 3 60 x 3 y 3 z 3 3 10 60 x 3 y 3 z 3 1000 3 x 3 y 3 z 3 50 \begin{aligned} 3x^3+4y^3+5^3 & \ge 3 \sqrt[3]{60 x^3 y^3 z^3} \\ \Rightarrow 30 & \ge 3 \sqrt[3]{60 x^3 y^3 z^3} \\ \Rightarrow \sqrt[3]{60 x^3 y^3 z^3} & \le 10 \\ 60 x^3 y^3 z^3 & \le 1000 \\ 3 x^3 y^3 z^3 & \le 50 \end{aligned}

We note that from ( 1 ) (1) we have 3 x 3 y 3 z 3 50 3 x^3 y^3 z^3 \le 50 and from ( 2 ) (2) we have 3 x 3 y 3 z 3 = 50 3 x^3 y^3 z^3 = 50 . This means that there is only 1 \boxed{1} triplet ( x , y , z ) ( x, y, z) that satifies the equations.

Moderator note:

Great application of AM-GM!

I'll just add in that the triplet is ( 10 3 3 , 5 2 3 , 2 3 ) (\sqrt[3]{\frac{10}{3}},\sqrt[3]{\frac{5}{2}},\sqrt[3]{2}) . Nice solution.

James Wilson - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...