Solution set!

Algebra Level 4

( 1 3 ) x + 2 2 x > 9 \Large \left(\frac{1}{3}\right)^{\frac{|x+2|}{2-|x|}} > 9

If the range of x x that satisfy the inequality above is ( a , b ) (a,b) , find a + b a+b .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( 1 3 ) x + 2 2 x > 9 3 x + 2 2 x > 9 3 x + 2 x 2 > 3 2 x + 2 x 2 > 2 \begin{aligned} \left(\dfrac 13\right)^{\frac {|x+2|}{2-|x|}} & > 9 \\ 3^{-\frac {|x+2|}{2-|x|}} & > 9 \\ 3^{\frac {|x+2|}{|x|-2}} & > 3^2 \\ \implies \frac {|x+2|}{|x|-2} & > 2 \end{aligned}

Let x + 2 x 2 = { x 2 x 2 = 1 < 2 for x < 2 0 0 undefined for x = 2 x + 2 x 2 = 1 < 2 for 2 < x 0 x + 2 x 2 for x > 0 \dfrac {|x+2|}{|x|-2} = \begin{cases} \dfrac {-x-2}{-x-2} = 1 \color{#D61F06} < 2 & \text{for }x < -2 \\ \color{#D61F06} \dfrac 00 \implies \text{undefined} & \text{for }x=-2 \\ \dfrac {x+2}{-x-2} = -1 \color{#D61F06} < 2 & \text{for }-2 < x \le 0 \\ \dfrac {x+2}{x-2} & \text{for } x > 0 \end{cases}

For 0 < x < 2 < x + 2 x 2 < 1 < 2 0<x<2 \implies -\infty < \dfrac {x+2}{x-2} < -1 \color{#D61F06} < 2

For x > 2 x > 2 ,

x + 2 x 2 > 2 x + 2 > 2 x 4 x < 6 \begin{aligned} \frac {x+2}{x-2} & > 2 \\ x+2 & > 2x - 4 \\ \implies x & < 6 \end{aligned}

Therefore, ( 1 3 ) x + 2 2 x > 9 \left(\dfrac 13\right)^{\frac {|x+2|}{2-|x|}} > 9 when x ( 2 , 6 ) x \in (2,6) . a + b = 2 + 6 = 8 \implies a+b = 2+6 = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...