Solutions of Triangles

Geometry Level 5

A cyclic octagon ABCDEFGH has sides 3,3,3,3,4,4,4,4 respectively. Find the radius of the circumcircle of this octagon


The answer is 4.580.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Consider half of the octagon with sides 3 , 3 , 4 , 4 3,3,4,4 . Let the radius of the circumcircle be r r . Then the half octagon is formed by two r r - 3 3 - r r isosceles triangles and two r r - 4 4 - r r isosceles triangles. Let the angles of the r r - 3 3 - r r and r r - 4 4 - r r isosceles triangles at the center of the circumcircle be α \alpha and β \beta respectively. Then, we have:

2 α + 2 β = π α + β = π 2 β = π 2 α 2\alpha + 2\beta = \pi \quad \Rightarrow \alpha + \beta = \frac {\pi}{2} \quad \Rightarrow \beta = \frac {\pi}{2} - \alpha

By Cosine Rule:

{ 9 = r 2 + r 2 2 r 2 cos α = 2 r 2 ( 1 cos α ) 16 = 2 r 2 ( 1 cos β ) = 2 r 2 ( 1 sin α ) \begin {cases} \space\space 9 &= r^2 + r^2 - 2r^2\cos {\alpha} & = 2 r^2 (1 - \cos{\alpha} )\\ 16 &= 2 r^2 (1 - \cos{\beta} ) & = 2 r^2 (1 - \sin{\alpha} ) \end {cases}

We note that cos β = cos ( π 2 α ) = sin α \cos{\beta} = \cos{(\frac {\pi}{2} - \alpha)} = \sin{\alpha} .

Dividing the two equations, we have:

9 16 = 1 cos α 1 sin α 9 ( 1 sin α ) = 16 ( 1 cos α ) \dfrac {9}{16} = \dfrac {1 - \cos{\alpha} }{1 - \sin{\alpha} } \quad \Rightarrow 9(1 - \sin{\alpha}) = 16(1 - \cos{\alpha})

9 sin α = 7 16 cos α \Rightarrow - 9\sin{\alpha} = 7 - 16\cos{\alpha}

Squaring both sides:

81 sin 2 α = 49 224 cos α + 256 cos 2 α 81\sin^2{\alpha} = 49 - 224\cos{\alpha} + 256\cos^2{\alpha}

81 ( 1 cos 2 α ) = 49 224 cos α + 256 cos 2 α \Rightarrow 81(1- \cos^2{\alpha} ) = 49 - 224\cos{\alpha} + 256\cos^2{\alpha}

337 cos 2 α 224 cos α + 49 = 0 \Rightarrow 337\cos^2{\alpha} - 224\cos{\alpha} + 49 = 0

cos α = 0.78556399 \Rightarrow \cos{\alpha} = 0.78556399 or 0.120875563 -0.120875563

As α < π 2 cos α = 0.78556399 \alpha < \frac {\pi}{2} \quad \Rightarrow \cos{\alpha} = 0.78556399

Substituting cos α = 0.78556399 \cos{\alpha} = 0.78556399 in 9 = 2 r 2 ( 1 cos α ) 9=2 r^2 (1 - \cos{\alpha} ) , we get r = 4.581 r = \boxed {4.581} .

Jimmy Kariznov
Dec 5, 2014

We can rearrange the side lengths such that A B = C D = E F = G H = 3 AB = CD = EF = GH = 3 and B C = D E = F G = H A = 4 BC = DE = FG = HA = 4 without changing the radius of the circumcircle.

Let O O be the center of the circumcircle and R R denote the length of its radius.

Since there is 4 4 -fold rotational symmetry about O O , we have A O C = 9 0 \angle AOC = 90^{\circ} .

Using the Pythagorean Theorem on $\Delta OAC$, we get A C = R 2 AC = R\sqrt{2} .

Since A B C \angle ABC cuts the circumcircle into arcs of 9 0 90^{\circ} and 27 0 270^{\circ} , A B C = 13 5 \angle ABC = 135^{\circ} .

Now, apply the Law of Cosines to Δ A B C \Delta ABC to get:

A C 2 = A B 2 + B C 2 2 A B B C cos A B C AC^2 = AB^2+BC^2-2 \cdot AB \cdot BC \cdot \cos \angle ABC

2 R 2 = 3 2 + 4 2 2 3 4 cos 13 5 2R^2 = 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \cos 135^{\circ}

R = 25 + 12 2 2 4.581 R = \sqrt{\dfrac{25+12\sqrt{2}}{2}} \approx 4.581

Sahi hai yaar

Kumar Krish - 2 years, 4 months ago
Vaibhav Ojha
Dec 4, 2014

The different sides of the quadrilateral act as chords of the circle. We already know that the chords of same length subtend the same angle at the center of the circle. Let the chord of length 3 subtend an angle x, and the chord of length 4 subtend an angle y. Since sum of angles subtended by all 8 chords will be 360, we instantly have x+y=90 degrees. Let the radius of the circle be r. now, 2 r Sin(0.5 x)=3 and 2 r Sin(0.5 y)=4. substitute y=90 degree - x in the above equation. Compute Cos(x/2) using Sin(x/2). We obtain a quadratic equation in r whose solution is r = sqrt((25+12sqrt(2))/2)=4.58

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...