Too Many Solutions!

Algebra Level 5

a + b + c + d = 12 \large a+b+c+d=12 a b c d = 27 + a b + a c + a d + b c + b d + c d \large abcd = 27+ab+ac+ad+bc+bd+cd

Given that a , b , c a,b,c and d d are all positive integers , find the sum of all possible values of a a .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohith M.Athreya
Jun 24, 2014

given a+b+c+d = 12 ............ (1)
and abcd=27+ab+ac+ad+bc+bd+cd ................ (2)
applying AM-GM inequality a b + a c + a d + b c + b d + c d 6 \frac{ab+ac+ad+bc+bd+cd}{6} >= ( a b c d ) 1 / 2 (abcd)^{1/2} ;
ab+ac+ad+bc+bd+cd>= 6 a b c d \sqrt{abcd}
abcd >= 27+ 6 a b c d \sqrt{abcd} (using (2))
abcd- 6 a b c d \sqrt{abcd} -27>=0
( 6 a b c d \sqrt{abcd} -9)( 6 a b c d \sqrt{abcd} +3) >=0
a b c d \sqrt{abcd} >=9 .............(3)
a + b + c + d 4 \frac{a+b+c+d}{4} >= ( a b c d ) 1 / 4 (abcd)^{1/4} a+b+c+d=12 .........(1)
9>= a b c d \sqrt{abcd} .................(4)
from (3) and (4) we get abcd=81. thus AM=GM
thus a=b=c=d=3 since there is only one such solution, the answer is 3.


Aaaaa Bbbbb
Jun 24, 2014

12 = a + b + c + d 4 ( a b c d ) 1 4 a b c d 81 12=a+b+c+d \ge 4(abcd)^\frac{1}{4} \Rightarrow abcd \le 81 a b c d = 27 + a b + a c + a d + b c + b d + c d 27 + 6 ( a b c d ) 1 2 abcd=27+ab+ac+ad+bc+bd+cd \ge 27+6(abcd)^\frac{1}{2} a b c d 81 a b c d = 81 a = 3 \Rightarrow abcd \Rightarrow 81\ge abcd=81\Rightarrow a=\boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...