a + b + c + d = 1 2 a b c d = 2 7 + a b + a c + a d + b c + b d + c d
Given that a , b , c and d are all positive integers , find the sum of all possible values of a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 2 = a + b + c + d ≥ 4 ( a b c d ) 4 1 ⇒ a b c d ≤ 8 1 a b c d = 2 7 + a b + a c + a d + b c + b d + c d ≥ 2 7 + 6 ( a b c d ) 2 1 ⇒ a b c d ⇒ 8 1 ≥ a b c d = 8 1 ⇒ a = 3
Problem Loading...
Note Loading...
Set Loading...
given a+b+c+d = 12 ............ (1)
and abcd=27+ab+ac+ad+bc+bd+cd ................ (2)
applying AM-GM inequality 6 a b + a c + a d + b c + b d + c d >= ( a b c d ) 1 / 2 ;
ab+ac+ad+bc+bd+cd>= 6 a b c d
abcd >= 27+ 6 a b c d (using (2))
abcd- 6 a b c d -27>=0
( 6 a b c d -9)( 6 a b c d +3) >=0
a b c d >=9 .............(3)
4 a + b + c + d >= ( a b c d ) 1 / 4 a+b+c+d=12 .........(1)
9>= a b c d .................(4)
from (3) and (4) we get abcd=81. thus AM=GM
thus a=b=c=d=3 since there is only one such solution, the answer is 3.