Solve a fractional equation!

Algebra Level 3

x + 1 x + 2 + x + 6 x + 7 = x + 2 x + 3 + x + 5 x + 6 \frac{x+1}{x+2} + \frac{x+6}{x+7} = \frac{x+2}{x+3} + \frac{x+5}{x+6}

Find the sum of all real values of x x satisfying the equation above.


The answer is -4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 14, 2021

x + 1 x + 2 + x + 6 x + 7 = x + 2 x + 3 + x + 5 x + 6 Let u = x + 1 + 7 2 = x + 4 u 3 u 2 + u + 2 u + 3 = u 2 u 1 + u + 1 u + 2 1 1 u 2 + 1 1 u + 3 = 1 1 u 1 + 1 1 u + 2 1 u 2 + 1 u + 3 = 1 u 1 + 1 u + 2 1 u 2 1 u + 2 = 1 u 1 1 u + 3 4 u 2 4 = 4 u 2 + 2 u 3 u 2 4 = u 2 + 2 u 3 2 u = 1 u = 1 2 x = u 4 = 4.5 \begin{aligned} \frac {x+\blue 1}{x+2} + \frac {x+6}{x+\red 7} & = \frac {x+2}{x+3} + \frac {x+5}{x+6} & \small \blue{\text{Let }u = x + \frac {1 + \red 7}2 = x + 4} \\ \frac {u-3}{u-2} + \frac {u+2}{u+3} & = \frac {u-2}{u-1} + \frac {u+1}{u+2} \\ 1 - \frac 1{u-2} + 1 - \frac 1{u+3} & = 1 - \frac 1{u-1} + 1 - \frac 1{u+2} \\ \frac 1{u-2} + \frac 1{u+3} & = \frac 1{u-1} + \frac 1{u+2} \\ \frac 1{u-2} - \frac 1{u+2} & = \frac 1{u-1} - \frac 1{u+3} \\ \frac 4{u^2 - 4} & = \frac 4{u^2 + 2u - 3} \\ u^2 - 4 & = u^2 + 2u - 3 \\ 2 u & = - 1 \\ u & = - \frac 12 \\ \implies x & = u - 4 = \boxed{-4.5} \end{aligned}

Klement Chua
May 14, 2021

From the given equation, 1 1 x + 2 + 1 1 x + 7 = 1 1 x + 3 + 1 1 x + 6 1-\frac{1}{x+2} + 1 - \frac{1}{x+7} = 1-\frac{1}{x+3} + 1 - \frac{1}{x+6} 1 x + 6 1 x + 7 = 1 x + 2 1 x + 3 \frac{1}{x+6} - \frac{1}{x+7} = \frac{1}{x+2} - \frac{1}{x+3} ( x + 2 ) ( x + 3 ) = ( x + 6 ) ( x + 7 ) (x+2)(x+3)=(x+6)(x+7) x 2 + 5 x + 6 = x 2 + 13 x + 42 x^2+5x+6=x^2+13x+42 8 x = 36 8x = -36 x = 4.5 x=-4.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...