Solve an equation with three variables

Algebra Level 4

x 1 + y + z + 1 = 1 2 ( x + y + z + 3 ) = n \sqrt{x - 1} + \sqrt{y} + \sqrt{z + 1} = \frac{1}{2} (x + y + z + 3) = n

If reals x x , y y and z z satisfy the above equation, find n n .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karim Fawaz
Jun 11, 2016

x 1 + y + z + 1 = 1 2 \sqrt{x - 1} + \sqrt{y} + \sqrt{z + 1} = \frac{1}{2} (x + y + z + 3) )

2 x 1 + 2 y + 2 z + 1 = ( x + y + z + 3 ) 2 \sqrt{x - 1} + 2 \sqrt{y} + 2 \sqrt{z + 1} = (x + y + z + 3)

( x + y + z + 1 + 1 + 1 ) 2 x 1 2 y 2 z + 1 = 0 (x + y + z + 1 + 1 + 1) - 2 \sqrt{x - 1} - 2 \sqrt{y} - 2 \sqrt{z + 1} = 0

Reordering:

x 2 x 1 + 1 + y 2 y + 1 + z 2 z + 1 + 1 = 0 x - 2 \sqrt{x - 1} + 1 + y - 2 \sqrt{y} + 1 + z - 2 \sqrt{z + 1} + 1 = 0

( x 1 ) 2 x 1 + 1 + y 2 y + 1 + ( z + 1 ) 2 z + 1 + 1 = 0 (x - 1) - 2 \sqrt{x - 1} + 1 + y - 2 \sqrt{y} + 1 + (z + 1) - 2 \sqrt{z + 1} + 1 = 0

( x 1 1 ) 2 + ( y 1 ) 2 + ( z + 1 1 ) 2 = 0 (\sqrt{x - 1} - 1) ^ {2} + (\sqrt{y} - 1) ^ {2} + (\sqrt{z + 1} - 1) ^ {2} = 0

( x 1 1 ) = 0 (\sqrt{x - 1} - 1) = 0 and ( y 1 ) = 0 (\sqrt{y} - 1) = 0 and ( z + 1 1 ) = 0 (\sqrt{z + 1} - 1) = 0

Therefore x = 2, y = 1, z = 0.

n = 1 2 \frac{1}{2} (x + y + z + 3)

n = 1 2 \frac{1}{2} (2 + 1 + 0 + 3) = 6 / 2 = 3

Fantastic solution!

Hung Woei Neoh - 5 years ago

Did the same... (+1)

Aditya Kumar - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...