Real positive numbers x and y ( x > y ) are such that
{ x + y = 4 x 2 + y 2 = 1 2
And that x − y = a − b , where a and b are natural numbers. Determine a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution with @Wildan Bagus Wicaksono 's
x + y x 2 + 2 x y + y 2 2 x y ⟹ x y = 4 = 1 6 = 1 6 − ( x 2 + y 2 ) = 1 6 − 1 2 = 4 = 2 Squaring both sides Add − ( x 2 + y 2 ) on both sides Given that x 2 + y 2 = 1 2
Now consider:
z z 2 ⟹ z = x + y = x − 2 x y + y = 4 − 2 2 = 4 − 8 Squaring both sides Note that x + y = 4 and x y = 2 Taking square root both sides
Therefore, a + b = 4 + 8 = 1 2 .
Problem Loading...
Note Loading...
Set Loading...
x 2 + y 2 ( x + y ) 2 − 2 x y 4 2 − 2 x y 1 6 − 2 x y − 2 x y ∴ x y x + y ( x − y ) 2 + 2 x y ( x − y ) 2 + 2 2 ( x − y ) 2 x − y ∴ x − y = 1 2 = 1 2 = 1 2 = 1 2 = − 4 = 2 = 4 = 4 = 4 = 4 − 2 2 = ± 4 − 2 2 = ± 4 − 8
Because x > y , then x − y > 0 . So, x − y = 4 − 8 . Therefore, a = 4 and b = 8 ⟹ a + b = 1 2 .