Solve for a + b a+b .

Algebra Level 2

Real positive numbers x x and y y ( x > y x>y ) are such that

{ x + y = 4 x 2 + y 2 = 12 \begin{cases} x+y = 4 \\ x^2 + y^2 = 12 \end{cases}

And that x y = a b \sqrt{x} - \sqrt{y} = \sqrt{a-\sqrt{b}} , where a a and b b are natural numbers. Determine a + b a+b .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 2 + y 2 = 12 ( x + y ) 2 2 x y = 12 4 2 2 x y = 12 16 2 x y = 12 2 x y = 4 x y = 2 x + y = 4 ( x y ) 2 + 2 x y = 4 ( x y ) 2 + 2 2 = 4 ( x y ) 2 = 4 2 2 x y = ± 4 2 2 x y = ± 4 8 \begin{aligned}x^2 + y^2 &= 12 \\ (x+y)^2 - 2xy &= 12 \\ 4^2 - 2xy &= 12 \\ 16-2xy &= 12 \\ -2xy &= -4 \\ \therefore xy &= 2 \\ x+y &= 4 \\ \left (\sqrt{x} - \sqrt{y} \right )^2 +2\sqrt{xy} &= 4 \\ \left (\sqrt{x} - \sqrt{y} \right )^2 + 2\sqrt{2} &= 4 \\ \left(\sqrt{x} - \sqrt{y} \right )^2 &= 4-2\sqrt{2} \\ \sqrt{x} - \sqrt{y} &= \pm \sqrt{4-2\sqrt{2}} \\ \therefore \sqrt{x}-\sqrt{y} &= \pm \sqrt{4-\sqrt{8}} \end{aligned}

Because x > y x>y , then x y > 0 \sqrt{x} - \sqrt{y} > 0 . So, x y = 4 8 \sqrt{x} - \sqrt{y} = \sqrt{4-\sqrt{8}} . Therefore, a = 4 a=4 and b = 8 b=8 a + b = 12 \Longrightarrow a+b = \boxed{12} .

Chew-Seong Cheong
Feb 12, 2019

Similar solution with @Wildan Bagus Wicaksono 's

x + y = 4 Squaring both sides x 2 + 2 x y + y 2 = 16 Add ( x 2 + y 2 ) on both sides 2 x y = 16 ( x 2 + y 2 ) Given that x 2 + y 2 = 12 = 16 12 = 4 x y = 2 \begin{aligned} x+y & = 4 & \small \color{#3D99F6} \text{Squaring both sides} \\ x^2 + 2xy + y^2 & = 16 & \small \color{#3D99F6} \text{Add } - (x^2+y^2) \text{ on both sides} \\ 2xy & = 16 - \color{#3D99F6} (x^2+y^2) & \small \color{#3D99F6} \text{Given that }x^2 + y^2 = 12 \\ & = 16 - 12 = 4 \\ \implies xy & = 2 \end{aligned}

Now consider:

z = x + y Squaring both sides z 2 = x 2 x y + y Note that x + y = 4 = 4 2 2 and x y = 2 z = 4 8 Taking square root both sides \begin{aligned} z & = \sqrt x + \sqrt y & \small \color{#3D99F6} \text{Squaring both sides} \\ z^2 & = {\color{#3D99F6}x} - 2\sqrt{\color{#D61F06} xy} + \color{#3D99F6} y & \small \color{#3D99F6} \text{Note that }x+y = 4 \\ & = {\color{#3D99F6}4} - 2\sqrt{\color{#D61F06}2} & \small \color{#D61F06} \text{and }xy = 2 \\ \implies z & = \sqrt{4-\sqrt 8} & \small \color{#3D99F6} \text{Taking square root both sides} \end{aligned}

Therefore, a + b = 4 + 8 = 12 a+b = 4+8 = \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...