Solve for x x

Algebra Level 3

a 2 c + b + b 2 a + c + c 2 b + a x \large \dfrac a{2c+b} + \dfrac b{2a+c} + \dfrac c{2b+a} \geq x

If a , b a,b and c c are positive real numbers satisfying the inequality above, find the maximum value of x x .

2 0 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arihant Samar
Mar 1, 2016

Let the Left hand side of the inequality be called P . P can be written as:

a 2 a ( 2 c + b ) + b 2 b ( 2 a + c ) + c 2 c ( 2 b + a ) \frac { { a }^{ 2 } }{ a(2c+b) } +\frac { { b }^{ 2 } }{ b(2a+c) } +\frac { { c }^{ 2 } }{ c(2b+a) }

By Titu's Lemma

P ( a + b + c ) 2 3 ( a b + b c + c a ) = 1 . . . P\ge \frac { (a+b+c)^{ 2 } }{ 3(ab+bc+ca) } =1\quad ...**

. . 1 2 [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] 0 **..\quad \frac { 1 }{ 2 } \left[ { (a-b) }^{ 2 }+{ (b-c) }^{ 2 }+{ (c-a) }^{ 2 } \right] \ge 0

This is true by Trivial Inequality

a 2 + b 2 + c 2 a b b c c a 0 a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a 3 a b + 3 b c + 3 c a \Rightarrow { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca\ge 0\Rightarrow { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+2ab+2bc+2ca\ge 3ab+3bc+3ca

( a + b + c ) 2 3 ( a b + b c + c a ) ( a + b + c ) 2 3 ( a b + b c + c a ) 1 \Rightarrow { (a+b+c) }^{ 2 }\ge 3(ab+bc+ca)\Rightarrow \frac { { (a+b+c) }^{ 2 } }{ 3(ab+bc+ca) } \ge 1

Hence x = 1 x=\boxed { 1 } with equality when a = b = c a=b=c

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...