A number theory problem by Shwet Ranjan

True or False?

K 7 7 + K 5 5 + 2 K 3 3 K 105 \dfrac{K^7}{7} + \dfrac{K^5}{5}+\dfrac{2K^3}{3}-\dfrac{K}{105} is an integer for every positive integer K K .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shwet Ranjan
Nov 15, 2017
  • Fermat's theorem says that a^p = a(mod p) where p is a prime and a is an integer.

Since a p p \frac{a^p}{p} - a p \frac{a}{p} is an integer.

K 7 7 \frac{K^7}{7} + K 5 5 \frac{K^5}{5} + 2 K 3 3 \frac{2K^3}{3} - k 105 \frac{k}{105}

= ( k 7 7 \frac{k^7}{7} - k 7 \frac{k}{7} ) + ( k 5 k \frac{k^5}{k} - k 5 \frac{k}{5} )+2( k 3 3 \frac{k^3}{3} - k 3 \frac{k}{3} ) + k 7 \frac{k}{7} + k 5 \frac{k}{5} + 2 k 3 \frac{2k}{3} - k 105 \frac{k}{105}

= ( k 7 7 \frac{k^7}{7} - k 7 \frac{k}{7} ) + ( k 5 k \frac{k^5}{k} - k 5 \frac{k}{5} )+2( k 3 3 \frac{k^3}{3} - k 3 \frac{k}{3} ) + k

is an integer.

Piero Sarti
Feb 27, 2018

Let f ( K ) = K 7 7 + K 5 5 + 2 K 3 3 K 105 f(K) = \dfrac{K^7}{7} + \dfrac{K^5}{5}+\dfrac{2K^3}{3}-\dfrac{K}{105} .

When K = 1 K = 1 ,

f ( 1 ) = 1 7 + 1 5 + 2 3 1 105 = 1 f(1) = \dfrac{1}{7} + \dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{105} = 1 which is an integer.

Assume that when K = k , f ( k ) K = k, f(k) is an integer.

Now when K = k + 1 K = k + 1 ,

f ( k + 1 ) = ( k + 1 ) 7 7 + ( k + 1 ) 5 5 + 2 ( k + 1 ) 3 3 ( k + 1 ) 105 f(k + 1) = \dfrac{(k + 1)^7}{7} + \dfrac{(k + 1)^5}{5}+\dfrac{2(k + 1)^3}{3}-\dfrac{(k + 1)}{105}

f ( k + 1 ) = k 7 7 + k 5 5 + 2 k 3 3 k 105 + 1 7 + 1 5 + 2 3 1 105 + ( 1 7 ) k 6 + + ( 6 7 ) k 7 + ( 1 5 ) k 4 + + ( 4 5 ) k 5 + 2 × ( 1 3 ) k 2 + ( 2 3 ) k 3 f(k + 1) = \dfrac{k^7}{7} + \dfrac{k^5}{5} + \dfrac{2k^3}{3} - \dfrac{k}{105} + \dfrac{1}{7} + \dfrac{1}{5} + \dfrac{2}{3} - \dfrac{1}{105} + \dfrac{\binom{1}{7}k^6 + \cdots + \binom{6}{7}k}{7} + \dfrac{\binom{1}{5}k^4 + \cdots + \binom{4}{5}k}{5}+2\times\dfrac{\binom{1}{3}k^2 + \binom{2}{3}k}{3}

And since 7 C n 7 _7C^n | 7 where 0 < n < 7 0< n <7 , 5 C s 5 _5C^s | 5 where 0 < s < 5 0< s <5 and 3 C g 3 _3C^g | 3 where 0 < g < 3 0< g <3 and we previously stated that f ( 1 ) f(1) are f ( k ) f(k) are integers, it follows that f ( k + 1 ) f(k + 1) is also an integer f ( K ) \therefore f(K) is an integer K \forall K and the answer is True \boxed{\text{True}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...