A geometry problem by Aly Ahmed

Geometry Level 3

tan 1 ( x ( x + 1 ) ) + sin 1 ( x 2 + x + 1 ) = π 2 \large \tan^{-1} \left( \sqrt{x(x+1)} \right) + \sin^{-1} \left( \sqrt{x^2+x+1} \right) = \dfrac \pi 2

Find the sum of the roots of the equation above.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let x 2 + x = t x^2+x=t then tan 1 t = π 2 sin 1 t + 1 = cos 1 t + 1 \displaystyle \tan^{-1}\sqrt{t}=\frac{\pi}{2}-\sin^{-1}\sqrt{t+1}=\cos^{-1}\sqrt{t+1}

Now , cos 1 t + 1 = tan 1 t t + 1 \displaystyle \cos^{-1}\sqrt{t+1}=\tan^{-1}\sqrt{\frac{-t}{t+1}} and since t t + 1 > 0 \displaystyle \frac{-t}{t+1}>0 so 1 < t < 0 -1<t<0

Therefore , tan 1 t = tan 1 t t + 1 t = t t + 1 t + 2 = 0 \displaystyle \tan^{-1}\sqrt{t}=\tan^{-1}\sqrt{\frac{-t}{t+1}}\implies t=\frac{-t}{t+1} \implies t+2=0

So x 2 + x + 2 = 0 \displaystyle x^2+x+2=0 and sum of roots is 1 \boxed{-1}

Chew-Seong Cheong
Oct 29, 2016

tan 1 x ( x + 1 ) + sin 1 x 2 + x + 1 = π 2 tan 1 x ( x + 1 ) = π 2 sin 1 x 2 + x + 1 sin ( tan 1 x ( x + 1 ) ) = sin ( π 2 sin 1 x 2 + x + 1 ) x ( x + 1 ) x 2 + x + 1 = x 2 x x 2 + x x 2 + x + 1 = x 2 x x 2 + x + 1 = 1 x ( x + 1 ) = 0 x = { 0 1 \begin{aligned} \tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2+x+1} & = \frac \pi 2 \\ \tan^{-1} \sqrt{x(x+1)} & = \frac \pi 2 - \sin^{-1} \sqrt{x^2+x+1} \\ \sin \left(\tan^{-1} \sqrt{x(x+1)} \right) & = \sin \left(\frac \pi 2 - \sin^{-1} \sqrt{x^2+x+1} \right) \\ \frac {\sqrt{x(x+1)}}{\sqrt{x^2+x+1}} & = \sqrt{-x^2-x} \\ \frac {x^2+x}{x^2+x+1} & = -x^2-x \\ x^2+x+1 & = -1 \\ x(x+1) & = 0 \\ \implies x & = \begin{cases} 0 \\ -1 \end{cases} \end{aligned}

Therefore, the sum of roots of the equation is 0 1 = 1 0-1= \boxed{-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...