tan − 1 ( x ( x + 1 ) ) + sin − 1 ( x 2 + x + 1 ) = 2 π
Find the sum of the roots of the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
tan − 1 x ( x + 1 ) + sin − 1 x 2 + x + 1 tan − 1 x ( x + 1 ) sin ( tan − 1 x ( x + 1 ) ) x 2 + x + 1 x ( x + 1 ) x 2 + x + 1 x 2 + x x 2 + x + 1 x ( x + 1 ) ⟹ x = 2 π = 2 π − sin − 1 x 2 + x + 1 = sin ( 2 π − sin − 1 x 2 + x + 1 ) = − x 2 − x = − x 2 − x = − 1 = 0 = { 0 − 1
Therefore, the sum of roots of the equation is 0 − 1 = − 1
Problem Loading...
Note Loading...
Set Loading...
Let x 2 + x = t then tan − 1 t = 2 π − sin − 1 t + 1 = cos − 1 t + 1
Now , cos − 1 t + 1 = tan − 1 t + 1 − t and since t + 1 − t > 0 so − 1 < t < 0
Therefore , tan − 1 t = tan − 1 t + 1 − t ⟹ t = t + 1 − t ⟹ t + 2 = 0
So x 2 + x + 2 = 0 and sum of roots is − 1