lo g 2 lo g x + lo g 3 lo g ( x + 1 ) = 2
Solve for the real x in the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
lo g 2 lo g x + lo g 3 lo g ( x + 1 ) lo g x lo g 3 + lo g ( x + 1 ) lo g 2 lo g 2 lo g 3 + lo g 3 lo g 2 = 2 = 2 lo g 2 lo g 3 = 2 lo g 2 lo g 3 Multiply both sides by lo g 2 lo g 3 Putting x = 2
Therefore, x = 2 .
Problem Loading...
Note Loading...
Set Loading...
If x > 2 then lo g ( x ) / lo g ( 2 ) > 1 and lo g ( x + 1 ) / lo g ( 3 ) > 1 , so the left side is too big.
If x < 2 then lo g ( x ) / lo g ( 2 ) < 1 and lo g ( x + 1 ) / lo g ( 3 ) < 1 , so the left side is too small.
If x = 2 then the equation is clearly true. Hence the only solution is 2 .