An algebra problem by swastik p (2)

Algebra Level pending

Suppose a , b R + a,b\in\mathbb{R^+} such that a a + b b = 183 and a b + b a = 182 a\sqrt{a}+b\sqrt{b}=183~~~~\text{and}~~~~ a\sqrt{b}+b\sqrt{a}=182 .

What is the value of 9 5 ( a + b ) ? \dfrac{9}{5}\left(a+b\right)~~~?

65 50 73 34 77

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
May 27, 2018

Let a = x , b = y \sqrt{a}=x,\sqrt{b}=y ,then x 3 + y 3 = 183 , x 2 y + y 2 x = 182 x^3+y^3=183,x^2y+y^2x=182

x 3 + y 3 + 3 ( x 2 y + y 2 x ) = ( x + y ) 3 = 183 + 182 × 3 = 729 , x + y = 9 x^3+y^3+3(x^2y+y^2x)=(x+y)^3=183+182\times3=729,x+y=9

x 3 + y 3 + x 2 y + y 2 x = ( x 2 + y 2 ) ( x + y ) = ( a + b ) × 9 = 183 + 182 = 365 , a + b = 365 9 x^3+y^3+x^2y+y^2x=(x^2+y^2)(x+y)=(a+b)\times9=183+182=365,a+b=\frac{365}9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...