Solve it either Geometrically or Algebraically

Geometry Level 5

Let a k , b k , l + { a }_{ k }, { b }_{ k }, l \in { \Re }^{ + } and a k 2 + b k 2 = l 2 { a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 } = { l }^{ 2 }

E = a k b k a k 2 + b k 2 + ( a k + b k ) a k 2 + b k 2 E = \cfrac { { a }_{ k }{ b }_{ k } }{ { a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 }+({ a }_{ k }+{ b }_{ k })\sqrt { { a }_{ k }^{ 2 }+{ b }_{ k }^{ 2 } } }

Find maximum value of E E

This is part of set Click here


The answer is 0.207.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Dec 11, 2014

Method-1 :

a k = x , b k = y a_{k} = x , b_{k} = y

x = l s i n a , y = l c o s a x = lsina , y = lcosa

E = x l . y l ( x l ) 2 + ( y l ) 2 + ( x l + y l ) ( x l ) 2 + ( y l ) 2 E = \dfrac{\dfrac{x}{l}.\dfrac{y}{l}}{ (\dfrac{x}{l})^{2} + (\dfrac{y}{l})^{2} + ( \dfrac{x}{l} + \dfrac{y}{l})\sqrt{(\dfrac{x}{l})^{2} + (\dfrac{y}{l})^{2}}}

E = s i n a c o s a 1 + ( s i n a + c o s a ) 1 E = \dfrac{sinacosa}{1 + (sina + cosa)\sqrt{1}}

2 E = s i n 2 a 1 + s i n a + c o s a 2E = \dfrac{sin2a}{1 + sina + cosa}

2 E = s i n 2 a 1 + 2 s i n ( π 4 + a ) 2E = \dfrac{sin2a}{1 + \sqrt{2}sin(\dfrac{\pi}{4} + a)}

for maximum denominator should be minimum

( s i n 2 a 1 + 2 s i n ( π 4 + a ) ) m a x = 2 1 (\dfrac{sin2a}{1 + \sqrt{2}sin(\dfrac{\pi}{4} + a)})_{max} = \sqrt{2} -1 ( a = 2 n π + 2 t a n 1 ( 2 1 ) a = 2n\pi + 2 tan^{-1}(\sqrt{2} -1)

E m a x = 2 1 2 E_{max} = \dfrac{\sqrt{2} - 1}{2}


Method-2:

x 1 2 + + x n 2 n x 1 + + x n n \sqrt{\frac{x_1^2+\cdots+x_n^2}{n}}\ge\frac{x_1+\cdots+x_n}{n}

E = x y 2 x 2 + y 2 2 + ( x 2 + y 2 ) 2 2 E = \dfrac{\dfrac{xy}{\sqrt{2}}}{\dfrac{x^{2} + y^{2}}{\sqrt{2}} + \dfrac{\sqrt{(x^{2} + y^{2})^{2}}}{2}} as we want minimum

E = 2 x y x 2 + y 2 ( 2 + 1 ) E = \dfrac{\sqrt{2}xy}{x^{2} + y^{2}(\sqrt{2} + 1)}

x 2 + y 2 2 x y x^{2} + y^{2} \geq 2xy

E m a x = 1 2 ( 2 + 1 ) = 2 1 2 E_{max} = \dfrac{1}{2(\sqrt{2} + 1)} = \dfrac{\sqrt{2} - 1}{2}


Method-3

Simply by A . M G . M A.M \geq G.M

E = 1 x y + y x + ( x + y ) ( x 2 + y 2 ) x y E = \dfrac{1}{\dfrac{x}{y} + \dfrac{y}{x} + \dfrac{(x + y)(\sqrt{x^{2} + y^{2}})}{xy}}

E m a x = 1 2 + 2 x y ( 2 x y ) x y E_{max} = \dfrac{1}{ 2 + \dfrac{2\sqrt{xy}(\sqrt{2xy})}{xy}}

E m a x = 1 2 ( 2 + 1 ) = 2 1 2 E_{max} = \dfrac{1}{2(\sqrt{2} + 1)} = \dfrac{\sqrt{2} - 1}{2}


And @megh choksi All Algebraic Methods are Very Nice Solution's !

And in Your Method-1 ) one can also Proceed In this way : 2 E = sin 2 a 1 + sin a + cos a 2 E = ( sin a + cos a ) 2 1 1 + sin a + cos a 2 E = sin a + cos a 1 2E\quad =\cfrac { \sin { 2a } }{ 1+\sin { a } +\cos { a } } \\ 2E\quad =\quad \cfrac { { (\sin { a } +\cos { a } ) }^{ 2 }-1 }{ 1+\sin { a } +\cos { a } } \\ 2E\quad =\quad \sin { a } +\cos { a } \quad -1 .

Deepanshu Gupta - 6 years, 6 months ago

did it without pen and paper !!!!

A Former Brilliant Member - 4 years, 8 months ago
Ronak Agarwal
Dec 11, 2014

This one's too easy

I have done it algebrically take a k + b k = x {a}_{k}+{b}_{k}=x and the whole problem reduces into finding the maximum value of :

f ( t ) = E = x l 2 l \large f(t)=E=\frac{x-l}{2l}

Now using the standard equality(actually I forgot it's name) we get

a k 2 + b k 2 2 ( a k + b k 2 ) 2 \large \frac{{a}_{k}^{2}+{b}_{k}^{2}}{2} \ge {(\frac{{a}_{k}+{b}_{k}}{2})}^{2}

x l 2 \large x \le l\sqrt{2}

Using this E m a x {E}_{max} is :

E = 2 1 2 \large E= \frac{\sqrt{2}-1}{2}

it's the nth power theorm :P with here n=2

A Former Brilliant Member - 4 years, 2 months ago

Actually I always try to do a problem alzebrically, since I hate Euclidean Geometry that is cyclic quadilaterals, similar triangles and all that stuff.

Ronak Agarwal - 6 years, 6 months ago
Suhas Sheikh
Jul 17, 2018

Just wondering Is there any geometrical solution to this?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...