Tangent

Geometry Level 2

tan 1 1 3 tan 1 1 5 + tan 1 1 7 = ? \large \tan^{-1} \frac {1}{3} - \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} = \ ?

tan 1 5 7 \text{tan}^{-1} \dfrac{5}{7} tan 1 3 11 \text{tan}^{-1} \dfrac{3}{11} tan 1 2 4 \text{tan}^{-1} \dfrac{2}{4} tan 1 4 9 \text{tan}^{-1} \dfrac{4}{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

θ = tan 1 1 3 tan 1 1 5 + tan 1 1 7 tan θ = tan ( tan 1 1 3 tan 1 1 5 + tan 1 1 7 ) = 1 3 1 5 1 + 1 3 × 1 5 + 1 7 1 1 3 1 5 1 + 1 3 × 1 5 × 1 7 = 1 8 + 1 7 1 1 8 × 1 7 = 15 55 = 3 11 θ = tan 1 3 11 \large \begin{aligned} \theta & = \tan^{-1} \frac 13 - \tan^{-1} \frac 15 + \tan^{-1} \frac 17 \\ \tan \theta & = \tan \left(\tan^{-1} \frac 13 - \tan^{-1} \frac 15 + \tan^{-1} \frac 17 \right) \\ & = \frac {\frac {\frac 13 - \frac 15}{1+\frac 13 \times \frac 15} + \frac 17}{1-\frac {\frac 13 - \frac 15}{1+\frac 13 \times \frac 15} \times \frac 17} \\ & = \frac {\frac 18 + \frac 17}{1-\frac 18 \times \frac 17} = \frac {15}{55} = \frac 3{11} \\ \implies \theta & = \boxed{\tan^{-1} \dfrac 3{11}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...