Solve it in Friday 13th - part 2

Geometry Level 4

cos ( 2 π 13 ) cos ( 6 π 13 ) + cos ( 2 π 13 ) cos ( 8 π 13 ) + cos ( 6 π 13 ) cos ( 8 π 13 ) \cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right)

If the trigonometric expression above can be expressed as α β -\dfrac{\alpha}{\beta} for coprime positive integers α \alpha and β \beta , find the value of α + β \alpha+\beta .

See Part 1 and Part 3 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 23, 2015

cos ( 2 π 13 ) cos ( 6 π 13 ) + cos ( 2 π 13 ) cos ( 8 π 13 ) + cos ( 6 π 13 ) cos ( 8 π 13 ) = 1 2 [ 2 cos ( 2 π 13 ) cos ( 6 π 13 ) + 2 cos ( 2 π 13 ) cos ( 8 π 13 ) + 2 cos ( 6 π 13 ) cos ( 8 π 13 ) ] = 1 2 [ cos ( 2 π 13 ) cos ( 6 π 13 ) sin ( 2 π 13 ) sin ( 6 π 13 ) + cos ( 2 π 13 ) cos ( 6 π 13 ) + sin ( 2 π 13 ) sin ( 6 π 13 ) + cos ( 2 π 13 ) cos ( 8 π 13 ) sin ( 2 π 13 ) sin ( 8 π 13 ) + cos ( 2 π 13 ) cos ( 8 π 13 ) + sin ( 2 π 13 ) sin ( 8 π 13 ) + cos ( 6 π 13 ) cos ( 8 π 13 ) sin ( 6 π 13 ) sin ( 8 π 13 ) + cos ( 6 π 13 ) cos ( 8 π 13 ) + sin ( 6 π 13 ) sin ( 8 π 13 ) ] = 1 2 [ cos 8 π 13 + cos 4 π 13 + cos 10 π 13 + cos 6 π 13 + cos 14 π 13 + cos 2 π 13 ] = 1 2 [ cos 2 π 13 + cos 4 π 13 + cos 6 π 13 + cos 8 π 13 + cos 10 π 13 + cos 12 π 13 ] = 1 2 [ 1 2 ] [ See Note ] = 1 4 a + b = 1 + 4 = 5 \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{6\pi}{13} \right)} + \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} + \cos{\left(\frac{6\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} \\ = \frac{1}{2} \left[ 2\cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{6\pi}{13} \right)} + 2\cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} + 2\cos{\left(\frac{6\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} \right] \\ = \frac{1}{2} \left[ \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{6\pi}{13} \right)} - \sin{\left(\frac{2\pi}{13} \right)}\sin{\left(\frac{6\pi}{13} \right)} \\ \quad \quad + \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{6\pi}{13} \right)} + \sin{\left(\frac{2\pi}{13} \right)}\sin{\left(\frac{6\pi}{13} \right)} \\ \quad \quad \quad + \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} - \sin{\left(\frac{2\pi}{13} \right)}\sin{\left(\frac{8\pi}{13} \right)} \\ \quad \quad \quad \quad + \cos{\left(\frac{2\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} + \sin{\left(\frac{2\pi}{13} \right)}\sin{\left(\frac{8\pi}{13} \right)} \\ \quad \quad \quad \quad \quad + \cos{\left(\frac{6\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} - \sin{\left(\frac{6\pi}{13} \right)}\sin{\left(\frac{8\pi}{13} \right)} \\ \quad \quad \quad \quad \quad \quad + \cos{\left(\frac{6\pi}{13} \right)}\cos{\left(\frac{8\pi}{13} \right)} + \sin{\left(\frac{6\pi}{13} \right)}\sin{\left(\frac{8\pi}{13} \right)} \right] \\ = \frac{1}{2} \left[ \cos{\frac{8\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{\color{#D61F06}{14}\pi}{13}} + \cos{\frac{2\pi}{13}} \right] \\ = \frac{1}{2} \left[ \cos{\frac{2\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{\color{#D61F06}{12}\pi}{13}} \right] \\ = \frac{1}{2} \left[ \color{#3D99F6}{ - \frac{1}{2}} \right] \quad \quad \color{#3D99F6}{[\text{See Note}]} \\ = - \frac{1}{4} \\ \Rightarrow a + b = 1 + 4 = \boxed{5}

Note: z 13 = e 2 π 13 = 1 \color{#3D99F6}{\text{Note: }} z^{13} = e^{\frac{2\pi}{13}} = 1 are the 13 t h ^{th} roots of unity. By Argand's diagram, we can see that: cos 2 π 13 + cos 4 π 13 + cos 6 π 13 + cos 8 π 13 + cos 10 π 13 + cos 12 π 13 = 1 2 \cos{\frac{2\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{12\pi}{13}} = -\frac{1}{2}

Moderator note:

I wonder if there is a better reason why the answer is 1 4 \frac{1}{4} . Maybe looking at cos 13 θ \cos 13 \theta , or the 13th roots of unity, would help.

@Alan Enrique Ontiveros Salazar good question!!!!

Noel Lo - 5 years, 10 months ago

Let w = e 2 π i / 13 w=e^{2\pi i/13} , then let's use the product to sum formulas:

1 2 [ cos ( 8 π 13 ) + cos ( 4 π 13 ) + cos ( 10 π 13 ) + cos ( 6 π 13 ) + cos ( 14 π 13 ) + cos ( 2 π 13 ) ] \dfrac{1}{2}\left[\cos\left(\dfrac{8\pi}{13}\right)+\cos\left(\dfrac{4\pi}{13}\right)+\cos\left(\dfrac{10\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{14\pi}{13}\right)+\cos\left(\dfrac{2\pi}{13}\right)\right] .

But cos ( 14 π 13 ) = cos ( 12 π 13 ) \cos\left(\dfrac{14\pi}{13}\right)=\cos\left(\dfrac{12\pi}{13}\right) , so:

1 2 [ cos ( 2 π 13 ) + cos ( 4 π 13 ) + cos ( 6 π 13 ) + cos ( 8 π 13 ) + cos ( 10 π 13 ) + cos ( 12 π 13 ) ] \dfrac{1}{2}\left[\cos\left(\dfrac{2\pi}{13}\right)+\cos\left(\dfrac{4\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{8\pi}{13}\right)+\cos\left(\dfrac{10\pi}{13}\right)+\cos\left(\dfrac{12\pi}{13}\right)\right]

With the fact that 1 2 ( w k + w 13 k ) = cos ( 2 π k 13 ) \dfrac{1}{2}(w^k+w^{13-k})=\cos\left(\dfrac{2\pi k}{13}\right) and w + w 2 + + w 11 + w 12 = 1 w+w^2+\cdots+w^{11}+w^{12}=-1 , which follows inmediatly from factoring w 13 = 1 w^{13}=1 we get:

1 2 ( w + w 12 + w 2 + w 11 + w 3 + w 10 + w 4 + w 9 + w 5 + w 8 + w 6 + w 7 2 ) 1 2 ( 1 2 ) \dfrac{1}{2}\left(\dfrac{w+w^{12}+w^2+w^{11}+w^3+w^{10}+w^4+w^9+w^5+w^8+w^6+w^7}{2}\right) \\ \dfrac{1}{2}\left(\dfrac{-1}{2}\right)

So, cos ( 2 π 13 ) cos ( 6 π 13 ) + cos ( 2 π 13 ) cos ( 8 π 13 ) + cos ( 6 π 13 ) cos ( 8 π 13 ) = 1 4 \cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{2\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)\cos\left(\dfrac{8\pi}{13}\right)=-\dfrac{1}{4}

On comparing we get α = 1 , β = 4 \alpha=1,\beta=4 , thus the final answer is 1 + 4 = 5 1+4=\boxed{5} .

汶良 林
Jul 17, 2015

Write a solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...