Solve it in Friday 13th - part 1

Geometry Level 5

cos ( 2 π 13 ) + cos ( 6 π 13 ) + cos ( 8 π 13 ) \large \cos\left(\dfrac{2\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{8\pi}{13}\right)

If the trigonometric expression above can be expressed as α β γ \dfrac{\sqrt{\alpha}-\beta}{\gamma} for positive integers α , β , γ \alpha,\beta,\gamma with where α \alpha doesn't have squared factors and gcd ( β , γ ) = 1 \text{gcd}(\beta,\gamma)=1 , find α + β + γ \alpha+\beta+\gamma .

See Part 2 and Part 3 .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 23, 2015

Since z 13 = e 2 π 13 i = 1 z^{13} = e^{\frac{2\pi}{13}i} = 1 are the 13 t h ^{th} roots of unity. By Argand's diagram, we can see that:

cos 2 π 13 + cos 4 π 13 + cos 6 π 13 + cos 8 π 13 + cos 10 π 13 + cos 12 π 13 = 1 2 cos 2 π 13 + 2 cos 2 2 π 13 1 + cos 6 π 13 + cos 8 π 13 + 2 cos 2 5 π 13 1 + 2 cos 2 6 π 13 1 = 1 2 cos 2 π 13 + cos 6 π 13 + cos 8 π 13 + 2 ( cos 2 2 π 13 + cos 2 6 π 13 + cos 2 8 π 13 ) 3 = 1 2 cos 2 π 13 + cos 6 π 13 + cos 8 π 13 + 2 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) 2 4 ( cos 2 π 13 cos 6 π 13 + cos 2 π 13 cos 8 π 13 + cos 6 π 13 cos 8 π 13 ) = 5 2 [ Note 1 ] cos 2 π 13 + cos 6 π 13 + cos 8 π 13 + 2 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) 2 4 ( 1 4 ) = 5 2 2 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) 2 + cos 2 π 13 + cos 6 π 13 + cos 8 π 13 3 2 = 0 4 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) 2 + 2 ( cos 2 π 13 + cos 6 π 13 + cos 8 π 13 ) 3 = 0 \cos{\frac{2\pi}{13}} + \cos{\frac{4\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + \cos{\frac{10\pi}{13}} + \cos{\frac{12\pi}{13}} = -\frac{1}{2} \\ \cos{\frac{2\pi}{13}} + 2\cos^2{\frac{2\pi}{13}} - 1 + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + 2\cos^2{\frac{\color{#D61F06}{5}\pi}{13}} - 1 + 2\cos^2{\frac{6\pi}{13}} - 1 = -\frac{1}{2} \\ \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + 2\left( \cos^2{\frac{2\pi}{13}} + \cos^2{\frac{6\pi}{13}} + \cos^2{\frac{\color{#D61F06}{8}\pi}{13}} \right) - 3 = -\frac{1}{2} \\ \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + 2\left( \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} \right)^2 \\ \quad \quad - 4 (\color{#3D99F6}{\cos{\frac{2\pi}{13}}\cos{\frac{6\pi}{13}} + \cos{\frac{2\pi}{13}} \cos{\frac{8\pi}{13}} + \cos{\frac{6\pi}{13}} \cos{\frac{8\pi}{13}}}) = \frac{5}{2} \quad \color{#3D99F6}{[\text{Note 1}]} \\ \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} + 2\left( \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} \right)^2 - 4 (\color{#3D99F6}{-\frac{1}{4}}) = \frac{5}{2} \\ 2\left( \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} \right)^2 + \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} - \frac{3}{2} = 0 \\ 4\left( \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} \right)^2 + 2(\cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}}) - 3 = 0

cos 2 π 13 + cos 6 π 13 + cos 8 π 13 = 2 ± 4 + 48 8 = 13 1 4 [ Note 2 ] \begin{aligned} \Rightarrow \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} & = \frac {-2 \pm \sqrt{4+48}}{8} \\ & = \frac{\sqrt{13}-1}{4} \quad \color{#3D99F6}{[\text{Note 2}]} \end{aligned}

a + b + c = 13 + 1 + 4 = 18 \Rightarrow a + b + c = 13+1+4 = \boxed{18}

Note 1: \color{#3D99F6}{\text{Note 1: }} See solution of Part 2 .

Note 2: \color{#3D99F6}{\text{Note 2: }} cos 2 π 13 + cos 6 π 13 + cos 8 π 13 = cos 2 π 13 + cos 6 π 13 cos 5 π 13 \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} = \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} - \cos{\frac{5\pi}{13}} . We know that cos 2 π 13 > cos 5 π 13 > cos 6 π 13 > 0 cos 2 π 13 + cos 6 π 13 + cos 8 π 13 > 0 \cos{\frac{2\pi}{13}} > \cos{\frac{5\pi}{13}} > \cos{\frac{6\pi}{13}} > 0 \quad \Rightarrow \cos{\frac{2\pi}{13}} + \cos{\frac{6\pi}{13}} + \cos{\frac{8\pi}{13}} > 0 .

Moderator note:

That's some pretty amazing gymnastics.

Thanks. I have changed the solution.

Chew-Seong Cheong - 5 years, 11 months ago

How can anyone ever think of such solution...

Kenny Lau - 5 years, 11 months ago

Let a = cos 2 π 13 + cos 6 π 13 + cos 8 π 13 a=\cos{\dfrac{2\pi}{13}} + \cos{\dfrac{6\pi}{13}} + \cos{\dfrac{8\pi}{13}} and b = cos 4 π 13 + cos 10 π 13 + cos 12 π 13 b=\cos{\dfrac{4\pi}{13}} + \cos{\dfrac{10\pi}{13}} + \cos{\dfrac{12\pi}{13}} .

Also, let w = e 2 π i 13 w=e^{\frac{2\pi i}{13}} , so using w k + w 13 k = 2 cos ( 2 π k 13 ) w^k+w^{13-k}=2\cos\left(\dfrac{2\pi k}{13}\right) , we get:

a = w + w 12 + w 3 + w 10 + w 4 + w 9 2 b = w 2 + w 11 + w 5 + w 8 + w 6 + w 7 2 a=\dfrac{w+w^{12}+w^3+w^{10}+w^4+w^9}{2} \\ b=\dfrac{w^2+w^{11}+w^5+w^8+w^6+w^7}{2} .

Then, try to find a + b a+b and a b ab , the first was easy using w + w 2 + w 3 + + w 12 = 1 w+w^2+w^3+\cdots+w^{12}=-1 , which follows inmediatly from factoring w 13 = 1 w^{13}=1 :

a + b = 1 2 a+b=-\dfrac{1}{2}

But to find a b ab let's find the whole product and use the fact that w 13 = 1 w^{13}=1 , we end with a b = 3 4 ab=-\frac{3}{4} .

Finally, by the fact that a > 0 a>0 and b < 0 b<0 , use Vieta's formulas to find that a = 1 + 13 4 a=\dfrac{-1+\sqrt{13}}{4} and b = 1 13 4 b=\dfrac{-1-\sqrt{13}}{4} .

So, cos ( 2 π 13 ) + cos ( 6 π 13 ) + cos ( 8 π 13 ) = 1 + 13 4 \cos\left(\dfrac{2\pi}{13}\right)+\cos\left(\dfrac{6\pi}{13}\right)+\cos\left(\dfrac{8\pi}{13}\right)=\dfrac{-1+\sqrt{13}}{4}

On comparing we get α = 13 , β = 1 , γ = 4 \alpha=13,\beta=1,\gamma=4 , thus the final answer is 13 + 1 + 4 = 18 13+1+4=\boxed{18} .

This problem has been previously posted.

asad bhai - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...