A calculus problem by Nazmus sakib

Calculus Level 2

d 2 d x 2 ( x 2 ) e 2 = ? \large\dfrac{d^2}{dx^2}(x^2)^{e^{2}}=?

2 e 2 ( 2 e 2 1 ) ( x 2 ) e 2 1 2e^2(2e^{2}-1)(x^{2})^{e^{2}-1} 2 e 3 ( x 2 ) e 3 x \dfrac{2 e^3 (x^2)^{e^3}}{x} 1 1 2 e 2 ( x 2 ) e 2 x \dfrac{2 e^2 (x^2)^{e^2}}{x}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 19, 2017

y = x 2 e 2 = x a Let y = x 2 e 2 and a = 2 e 2 (a constant) d y d x = a x a 1 d 2 y d x 2 = a ( a 1 ) x a 2 Put back y = x 2 e 2 and a = 2 e 2 d 2 x 2 e 2 d x 2 = 2 e 2 ( 2 e 2 1 ) x 2 e 2 2 = 2 e 2 ( 2 e 2 1 ) ( x 2 ) e 2 1 \begin{aligned} \color{#3D99F6}y & = x^{\color{#D61F06}2e^2} = x^{\color{#D61F06}a} & \small \text{Let }{\color{#3D99F6} y = x^{2e^2}} \text{ and }\color{#D61F06} a = 2e^2 \text{ (a constant)} \\ \frac {dy}{dx} & = ax^{a-1} \\ \frac {d^2\color{#3D99F6}y}{dx^2} & = {\color{#D61F06}a}({\color{#D61F06}a}-1)x^{{\color{#D61F06}a}-2} & \small \text{Put back }{\color{#3D99F6} y = x^{2\color{#3D99F6}e^2}} \text{ and }\color{#D61F06} a = 2e^2 \\ \frac {d^2\color{#3D99F6}x^{2e^2}}{dx^2} & = {\color{#D61F06}2e^2}({\color{#D61F06}2e^2}-1)x^{{\color{#D61F06}2e^2}-2} \\ & = \boxed{2e^2(2e^2-1)\left(x^2\right)^{e^2-1}} \end{aligned}

@Chew-Seong Cheong Thanks for the solution,It is quite clear ¨ \huge\ddot\smile .

Nazmus sakib - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...