Solve it.....9

f(54) = 5

f(49) = 126

f(57) = 21

f(64) = 15

f(98) = 9

f(50) = ?

This function is only valid for two digit numbers. For example: 01, 87,56,60,05

93 65 4 1 5 78 0 55

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanveen Dhingra
Mar 16, 2015

This is an easy problem. It is just f ( a b ) = a C b i f a > b a n d f ( a b ) = b C a i f b > a f\left( ab \right) \quad =\quad { ^{ a } }C_{ b }\quad if\quad a\quad >\quad b\\ and\quad f\left( ab \right) \quad =\quad { ^{ b } }C_{ a }\quad if\quad b\quad >\quad a\\ f ( 54 ) = 5 C 4 = 5 ! 4 ! = 5 f ( 49 ) = 9 C 4 = 9 ! 5 ! × 4 ! = 126 f ( 57 ) = 7 C 5 = 7 ! 5 ! × 2 ! = 21 f ( 64 ) = 6 C 4 = 6 ! 4 ! × 2 ! = 15 f ( 98 ) = 9 C 8 = 9 ! 8 ! = 9 S o , f ( 50 ) = 5 C 0 = 0 a s n C 0 = 1 \quad \\ f(54)\quad =\quad { ^{ 5 } }C_{ 4 }\quad =\quad \frac { 5! }{ 4! } \quad =\quad 5\\ f(49)\quad =\quad { ^{ 9 } }C_{ 4 }\quad =\quad \frac { 9! }{ 5!\quad \times \quad 4! } \quad =\quad 126\\ f(57)\quad =\quad { ^{ 7 } }C_{ 5 }\quad =\quad \frac { 7! }{ 5!\quad \times \quad 2! } \quad =\quad 21\\ f(64)\quad =\quad { ^{ 6 } }C_{ 4 }\quad =\quad \frac { 6! }{ 4!\quad \times \quad 2! } \quad =\quad 15\\ f(98)\quad =\quad { ^{ 9 } }C_{ 8 }\quad =\quad \frac { 9! }{ 8! } \quad =\quad 9\\ So,\quad f(50)\quad =\quad { ^{ 5 } }C_{ 0 }\quad =\quad 0\quad as\quad \\ { ^{ n } }C_{ 0 }\quad =\quad 1 Therefore 0 is the answer.

If any doubts comment below

Its actually 1. nC0 is 1, not 0. Anyways, good one.

Abhilash Misra - 6 years, 1 month ago

Log in to reply

So the answer shud be 1? @Calvin Lin sir

tanveen dhingra - 6 years, 1 month ago

Log in to reply

n choose 0 is 1, like in the pascal's triangle.

I see that the answer to this problem is 1.

Calvin Lin Staff - 6 years, 1 month ago

nC0 is 1. -.-

Abhilash Misra - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...