Solve it \cdots

Algebra Level 2

Solve the equation

x + 1 3 = x 3 \large \sqrt[3]{x+1}=\sqrt{x-3}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 24, 2017

x + 1 3 = x 3 Let y = x 3 y + 4 3 = y Raise both sides by a power of 6 ( y + 4 ) 2 = y 3 y 2 + 8 y + 16 = y 3 y 3 y 2 8 y 16 = 0 ( y 4 ) ( y 2 + 3 y + 4 ) = 0 y = 4 Note that y 2 + 3 y + 4 = 0 has no real root. x = 7 \begin{aligned} \sqrt[3]{x+1} & = \sqrt{x-3} & \small \color{#3D99F6} \text{Let }y = x-3 \\ \sqrt[3]{y+4} & = \sqrt{y} & \small \color{#3D99F6} \text{Raise both sides by a power of }6 \\ (y+4)^2 & = y^3 \\ y^2 + 8y+16 & = y^3 \\ y^3 - y^2 - 8y-16 & =0 \\ (y-4)(y^2+3y+4) & =0 \\ y & = 4 & \small \color{#3D99F6} \text{Note that } y^2+3y+4 = 0 \text{ has no real root.} \\ \implies x & = \boxed{7} \end{aligned}

Kadek Yuki Andika
Nov 23, 2017

x + 1 3 6 = x 3 6 {\sqrt[3]{x+1}}^6 ={\sqrt{x-3}}^6 ( x + 1 ) 2 = ( x 3 ) 2 {(x+1)}^2 = {(x-3)}^2 x 2 + 2 x + 1 = x 3 9 x 2 + 27 x 27 x^2+2x+1 = x^3-9x^2+27x-27 x 3 10 x 2 + 25 x 8 = 0 x^3-10x^2+25x- 8= 0 ( x 7 ) ( x 2 3 x + 4 ) = 0 {\left(x-7\right)\left(x^{2\ }-3x+4\right)\ } = 0 ( x 2 3 x + 4 ) > 0 \left(x^{2\ }-3x+4\right)>0 so x=7

Thanks for the solution. How did you factor the expression x 3 10 x 2 + 25 x 28 x^3-10x^2+25x- 28 ?

Vilakshan Gupta - 3 years, 6 months ago

should be -28 not -8

geoff taylor - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...