An Elegant System of Equations

Algebra Level 2

a + b + c = 56 a 2 + b 2 + c 2 = 1344 a 2 = b c a b c = ? \begin{aligned} a+b+c &=& 56 \\ a^2+b^2+c^2 &=& 1344 \\ a^2 &=& bc \\ abc &=& \ ? \\ \end{aligned}


The answer is 4096.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Unmarried Amit
Nov 20, 2014

at first , a 2 = b c a^2 = bc is given >> then a b c = a 3 abc = a^3

( a + b + c ) 2 = ( 56 ) 2 (a+b+c)^2=(56)^2

a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a = 3136 a^2 + b^2 +c^2 + 2ab+2bc+2ca=3136

1344 + 2 ( b + c ) + 2 a 2 = 3136 1344+2(b+c)+2a^2=3136

1344 + 2 a ( a + b + c ) = 3136 1344+2a(a+b+c)=3136

1344 + 2 a 56 = 3136 1344+2a*56=3136

a = 16 a=16

then a b c = a 3 = ( 16 ) 3 = 4096 abc = a^3=(16)^3=4096

hmm...resonable...good thinking bro

Suganthi Jawahar - 6 years, 6 months ago

I have edited your solution, please hit the edit button to see how to latex problems and make them look "pretty". Also, double check that I didnt edit the meaning of your solution.

Also, I latexed the problem, please double check that I did not edit the meanings in any way. Also, this is a great problem. Nice job, keep it up 👍

Trevor Arashiro - 6 years, 6 months ago

kk the process you done on this problem is good but in step-3 you did a simple mistake i.e., common factor

Rajesh Mandepudi - 6 years, 6 months ago

Nice Approach! but 1344 + 2 ( b + c ) + 2 a 2 = 3136 1344 + 2(b + c) + 2a^{2} = 3136 should be 1344 + 2 a ( b + c ) + 2 a 2 = 3136 1344 + 2a(b + c) + 2a^{2} = 3136 .

Anurag Pandey - 5 years, 7 months ago
Jonathan Moey
Nov 24, 2014

a + b + c = 56 1 a 2 + b 2 + c 2 = 1344 2 a 2 = b c 3 f r o m e q u a t i o n 1 , w e k n o w t h a t b + c = 56 a 4 a n d e q u a t i o n 2 c a n b e w r i t t e n a s ( b + c ) 2 a 2 = 1344 5 , s i n c e a 2 = b c s u b s t i t u t e e q u a t i o n 4 i n t o e q u a t i o n 5 w e g e t ( 56 a ) 2 a 2 = 1344 a f t e r s o m e a l g e b r a i c m a n i p u l a t i o n s w e g e t a = 16 s u b s t i t u t e i t i n e q u a t i o n 3 w e g e t b c = 256 t h u s , a b c = 4096 a+b+c=56\quad \quad \quad \quad \quad \rightarrow \quad 1\\ { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }=1344\quad \rightarrow \quad 2\\ { a }^{ 2 }=bc\quad \quad \quad \quad \quad \quad \quad \quad \quad \rightarrow \quad 3\\ from\quad equation1,\quad we\quad know\quad that\quad b+c=56-a\quad \quad \rightarrow 4\\ and\quad equation2\quad can\quad be\quad written\quad as\quad { (b+c) }^{ 2 }-{ a }^{ 2 }=1344\quad \quad \rightarrow 5\quad ,since\quad { a }^{ 2 }=bc\\ substitute\quad equation4\quad into\quad equation5\quad we\quad get\quad { (56-a) }^{ 2 }-{ a }^{ 2 }=1344\\ after\quad some\quad algebraic\quad manipulations\quad we\quad get\quad a=16\\ substitute\quad it\quad in\quad equation3\quad we\quad get\quad bc=256\\ thus,\quad abc=4096\\ \quad \quad \quad \quad \quad \quad \quad \quad \\

can u plz explain the algebric manipulation of (56-a)^2-a^2 = ; a = 16 thnku

Fatima Saif - 6 years, 6 months ago

Log in to reply

(56-a)^2-a^2=1344 56^2+a^2- 112a- a^2=1344 56^2-112a=1344 a=16

Jonathan Moey - 6 years, 6 months ago

Log in to reply

sry got allignment problem

Jonathan Moey - 6 years, 6 months ago

( a + b + c ) 2 ( a 2 + b 2 + c 2 ) = 2 ( a b + b c + a c ) = 2 a ( a + b + c ) (a+b+c)^{2}-(a^{2}+b^{2}+c^{2}) = 2(ab+bc+ac) = 2a(a+b+c) where we used that b c = a 2 bc=a^{2} . Now using the given values for the expressions in parethesis we have

5 6 2 1344 = 2 56 a 1792 = 112 a a = 16. 56^{2} - 1344 = 2\cdot 56 \cdot a \rightarrow 1792 = 112a \rightarrow a=16.

But now a b c = a a 2 = a 3 = 1 6 3 = 4096 abc=a\cdot a^2 = a^3 = 16^3 = 4096

Renah Bernat
Nov 28, 2014

(a+b+c)^2=(56)^2 => (a)^2+(b)^2+(c)^2+2ac+2bc+2ab=(56)^2 => 1344+2ac+2(a)^2+2ab=(56)^2 => 1344+2a(a+b+c)=(56)^2 => 1344+2a(56)=(56)^2 => a=16 => abc= a (a)^2 => 16 (16)^2 => 4096.

Varun Parkash
Nov 28, 2014

a + b + c = 56

a = 56 - b - c

squaring both sides:

a^2 = (56 – b – c)^2

a^2 = 56^2 + b^2 + c^2 + 2(bc – 56b – 56c)

a^2 = 3136 + b^2 + c^2 + 2bc – 112b – 112c

now

a^2 + b^2 + c^2 = 1344 b^2 + c^2 = 1344 – a^2

so

a^2 = 3136 + 1344 – a^2 + 2bc – 112b – 112c

a^2 = 4480 – a^2 + 2a^2 – 112(b+c)

a^2 + a^2 – 2a^2 = 4480 – 112(b+c)

112(b+c) = 4480

(b+c) = 4480/112

(b+c) = 40

so

a + b + c = 56 a = 56 – 40 a = 16

now

bc = a^2

so

abc = a * bc = a * a^2 = a^3 = 16^3 = 4096

Ahmed Hessin
Nov 28, 2014

b^2+c^2+2bc-bc=1344 (bc=a^2)

(b+c)^2-a^2=1344 (complete square)

but, b+c=56-a

then, a^2-112a+3136-a^2=1344

simplifing we get, 112a=1792

a=16

bc=16^2

then,abc=16^3

finally, abc=4096.

Jason Hughes
Jan 7, 2015

start with a^2=bc. substitution for a^2 in a^2+b^2+c^2=1344. So b^2+c^2+bc=1344 add bc to both sides. so (b+c)^2 = 1344+bc so then (b+c)^2=1344+bc. Thats the same as (b+c)^2=1344+a^2. a+b+c=56 so b+c=56-a. Then (56-a)^2=1344+a^2. expand and simplify so that 56^2-1344=112a. that simplifies to 1792=112a. a=16. abc=a^3 so abc is a^3 = 16^3 = 4096

Apoorv Verma
Dec 26, 2014

a^2 = bc implies that b,a,c are in GP. so b + a + c = b (1 + r + r^2) = 56, where r is the common ratio. using some trial and error and substituting the value in a^2 + b^2 + c^2 = 1344 to verify, it is easy to get r = 2. so b = 8. hence abc = (br)^3 = 16^3 = 4096

Shikhar Jaiswal
Dec 5, 2014

a2 + b2 + c2 = 1344 a2 = bc so, bc + b2 + c2 = 1344 by adding ‘bc’ both side, we get 2bc + b2 + c2 =1344 + bc ((b+c)2 = 2bc + b2 + c2 ) (b+c)2 = 1344 + bc (56-a)2 = 1344 + bc (a+b+c=56… so b+c = 56-a) a2 + 3136 -112a =1344 + a2 (a2 = bc given) 112a=3136-1344 a=1792/112 a=16 so, a2=bc a3=abc so, abc = 4096

Abd Elazim Az
Nov 29, 2014

(a+b+c)^2=3136 (a^2+b^2+c^2)(2a(a+b+c))=3136 _ 1 (a^2+b^2+c^2)=1344 a+b+c= 56 recoupment _ 1 a=bc a=16 , a+b=40 , bc=256

William Chau
Nov 28, 2014

Solution 1.

Label the equations in the prescribed order as (1), (2) and (3). By (1) and (3),

(b+c)^2 = (56-a)^2,

b^2+2bc+c^2 = 3136-112a+a^2,

(4) b^2+bc+c^2 = 3136-112a.

By (2) and (3),

(5) b^2+bc+c^2 = 1344.

Equating (4) and (5),

3136-112a = 1344,

a = 16.

Therefore abc = a(a^2) = a^3 = 4096.

Solution 2.

By the first two equations,

(a+b+c)^2-(a^2+b^2+c^2) = 56^2-1344 = 1792,

ab+bc+ca = 896,

a(b+c)+bc = 896.

Substituting b+c = 56-a and a^2 = bc from the first and third equations,

a(56-a)+a^2 = 896,

a = 16.

Therefore abc = a(a^2) = a^3 = 4096.

Vinit Béléy
Nov 28, 2014

a + b + c = 56

(a + b + c)² = 56²

a² + b² + c² + 2(ab + bc+ ac) = 56²

ab + bc + ac = (56² - 1344)/2 = 896

Since bc = a²

ab + a² + ac = 896

a (a + b + c) = 896

a = 896/56 = 16

abc = a * bc = a * a² = a³ = 16³ = 4096

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...