a + b + c a 2 + b 2 + c 2 a 2 a b c = = = = 5 6 1 3 4 4 b c ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
hmm...resonable...good thinking bro
I have edited your solution, please hit the edit button to see how to latex problems and make them look "pretty". Also, double check that I didnt edit the meaning of your solution.
Also, I latexed the problem, please double check that I did not edit the meanings in any way. Also, this is a great problem. Nice job, keep it up 👍
kk the process you done on this problem is good but in step-3 you did a simple mistake i.e., common factor
Nice Approach! but 1 3 4 4 + 2 ( b + c ) + 2 a 2 = 3 1 3 6 should be 1 3 4 4 + 2 a ( b + c ) + 2 a 2 = 3 1 3 6 .
a + b + c = 5 6 → 1 a 2 + b 2 + c 2 = 1 3 4 4 → 2 a 2 = b c → 3 f r o m e q u a t i o n 1 , w e k n o w t h a t b + c = 5 6 − a → 4 a n d e q u a t i o n 2 c a n b e w r i t t e n a s ( b + c ) 2 − a 2 = 1 3 4 4 → 5 , s i n c e a 2 = b c s u b s t i t u t e e q u a t i o n 4 i n t o e q u a t i o n 5 w e g e t ( 5 6 − a ) 2 − a 2 = 1 3 4 4 a f t e r s o m e a l g e b r a i c m a n i p u l a t i o n s w e g e t a = 1 6 s u b s t i t u t e i t i n e q u a t i o n 3 w e g e t b c = 2 5 6 t h u s , a b c = 4 0 9 6
can u plz explain the algebric manipulation of (56-a)^2-a^2 = ; a = 16 thnku
Log in to reply
(56-a)^2-a^2=1344 56^2+a^2- 112a- a^2=1344 56^2-112a=1344 a=16
( a + b + c ) 2 − ( a 2 + b 2 + c 2 ) = 2 ( a b + b c + a c ) = 2 a ( a + b + c ) where we used that b c = a 2 . Now using the given values for the expressions in parethesis we have
5 6 2 − 1 3 4 4 = 2 ⋅ 5 6 ⋅ a → 1 7 9 2 = 1 1 2 a → a = 1 6 .
But now a b c = a ⋅ a 2 = a 3 = 1 6 3 = 4 0 9 6
(a+b+c)^2=(56)^2 => (a)^2+(b)^2+(c)^2+2ac+2bc+2ab=(56)^2 => 1344+2ac+2(a)^2+2ab=(56)^2 => 1344+2a(a+b+c)=(56)^2 => 1344+2a(56)=(56)^2 => a=16 => abc= a (a)^2 => 16 (16)^2 => 4096.
a + b + c = 56
a = 56 - b - c
squaring both sides:
a^2 = (56 – b – c)^2
a^2 = 56^2 + b^2 + c^2 + 2(bc – 56b – 56c)
a^2 = 3136 + b^2 + c^2 + 2bc – 112b – 112c
now
a^2 + b^2 + c^2 = 1344 b^2 + c^2 = 1344 – a^2
so
a^2 = 3136 + 1344 – a^2 + 2bc – 112b – 112c
a^2 = 4480 – a^2 + 2a^2 – 112(b+c)
a^2 + a^2 – 2a^2 = 4480 – 112(b+c)
112(b+c) = 4480
(b+c) = 4480/112
(b+c) = 40
so
a + b + c = 56 a = 56 – 40 a = 16
now
bc = a^2
so
abc = a * bc = a * a^2 = a^3 = 16^3 = 4096
b^2+c^2+2bc-bc=1344 (bc=a^2)
(b+c)^2-a^2=1344 (complete square)
but, b+c=56-a
then, a^2-112a+3136-a^2=1344
simplifing we get, 112a=1792
a=16
bc=16^2
then,abc=16^3
finally, abc=4096.
start with a^2=bc. substitution for a^2 in a^2+b^2+c^2=1344. So b^2+c^2+bc=1344 add bc to both sides. so (b+c)^2 = 1344+bc so then (b+c)^2=1344+bc. Thats the same as (b+c)^2=1344+a^2. a+b+c=56 so b+c=56-a. Then (56-a)^2=1344+a^2. expand and simplify so that 56^2-1344=112a. that simplifies to 1792=112a. a=16. abc=a^3 so abc is a^3 = 16^3 = 4096
a^2 = bc implies that b,a,c are in GP. so b + a + c = b (1 + r + r^2) = 56, where r is the common ratio. using some trial and error and substituting the value in a^2 + b^2 + c^2 = 1344 to verify, it is easy to get r = 2. so b = 8. hence abc = (br)^3 = 16^3 = 4096
a2 + b2 + c2 = 1344 a2 = bc so, bc + b2 + c2 = 1344 by adding ‘bc’ both side, we get 2bc + b2 + c2 =1344 + bc ((b+c)2 = 2bc + b2 + c2 ) (b+c)2 = 1344 + bc (56-a)2 = 1344 + bc (a+b+c=56… so b+c = 56-a) a2 + 3136 -112a =1344 + a2 (a2 = bc given) 112a=3136-1344 a=1792/112 a=16 so, a2=bc a3=abc so, abc = 4096
(a+b+c)^2=3136 (a^2+b^2+c^2)(2a(a+b+c))=3136 _ 1 (a^2+b^2+c^2)=1344 a+b+c= 56 recoupment _ 1 a=bc a=16 , a+b=40 , bc=256
Solution 1.
Label the equations in the prescribed order as (1), (2) and (3). By (1) and (3),
(b+c)^2 = (56-a)^2,
b^2+2bc+c^2 = 3136-112a+a^2,
(4) b^2+bc+c^2 = 3136-112a.
By (2) and (3),
(5) b^2+bc+c^2 = 1344.
Equating (4) and (5),
3136-112a = 1344,
a = 16.
Therefore abc = a(a^2) = a^3 = 4096.
Solution 2.
By the first two equations,
(a+b+c)^2-(a^2+b^2+c^2) = 56^2-1344 = 1792,
ab+bc+ca = 896,
a(b+c)+bc = 896.
Substituting b+c = 56-a and a^2 = bc from the first and third equations,
a(56-a)+a^2 = 896,
a = 16.
Therefore abc = a(a^2) = a^3 = 4096.
a + b + c = 56
(a + b + c)² = 56²
a² + b² + c² + 2(ab + bc+ ac) = 56²
ab + bc + ac = (56² - 1344)/2 = 896
Since bc = a²
ab + a² + ac = 896
a (a + b + c) = 896
a = 896/56 = 16
abc = a * bc = a * a² = a³ = 16³ = 4096
Problem Loading...
Note Loading...
Set Loading...
at first , a 2 = b c is given >> then a b c = a 3
( a + b + c ) 2 = ( 5 6 ) 2
then a b c = a 3 = ( 1 6 ) 3 = 4 0 9 6