Solve the equation with integers

Let x < y < z x<y<z be positive integers such that

5 x + 2 × 5 y + 5 z = 4500 5^x+2\times5^y+5^z=4500

Find the sum x + y + z x+y+z . If there is more than one distinct solution, type 1 -1 .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 31, 2020

Since x < y < z x < y < z , let y = x + a y = x+a and z = x + a + b z = x + a + b . Then a a and b b are integers 1 \ge 1 and the equation becomes:

5 x + 2 × 5 x + a + 5 x + a + b = 4500 Divide both sides by 5 x 1 + 2 × 5 a + 5 a + b = 36 × 5 3 x Add 1 on both sides 2 × 5 a + 5 a + b = 36 × 5 3 x 1 \begin{aligned} 5^x + 2 \times 5^{x+a} + 5^{x+a+b} & = 4500 & \small \blue{\text{Divide both sides by }5^x} \\ 1 + 2 \times 5^a + 5^{a+b} & = 36\times 5^{3-x} & \small \blue{\text{Add }-1 \text{ on both sides}} \\ 2 \times 5^a + 5^{a+b} & = 36\times 5^{3-x} - 1 \end{aligned}

Since the left-hand side is divisible by 5 5 , this means that the right-hand side 36 × 5 3 x 1 36 \times 5^{3-x} - 1 is also divisible by 5 5 . The only possibility is 5 3 x = 1 5^{3-x} = 1 or x = 3 x=3 . Then the equation becomes:

2 × 5 a + 5 a + b = 35 Divide both sides by 5 a 2 + 5 b = 7 × 5 1 a \begin{aligned} 2 \times 5^a + 5^{a+b} & = 35 & \small \blue{\text{Divide both sides by }5^a} \\ 2 + 5^b & = 7 \times 5^{1-a} \end{aligned}

Since a 1 a \ge 1 , the only solution is a = 1 a=1 . Then 2 + 5 b = 7 2+5^b = 7 , b = 1 \implies b = 1 . Therefore x + y + z = 3 x + 2 a + b = 9 + 2 + 1 = 12 x+y+z = 3x + 2a + b = 9+2+1 = \boxed{12} .

Tin Le
Jul 31, 2020

5 x + 2. 5 y + 5 z = 4500 5^x+2.5^y+5^z=4500

5 x ( 1 + 2. 5 y x + 5 z x ) = 4500 = 5 3 . ( 2 2 . 3 2 ) \Leftrightarrow 5^x(1+2.5^{y-x} + 5^{z-x}) = 4500 = 5^3.(2^2.3^2)

{ 5 x = 5 3 x = 3 1 + 2. 5 y x + 5 z x = 2 2 . 3 2 = 36 = 1 + 35 \Rightarrow \left\{\begin{matrix} 5^x=5^3 \Leftrightarrow x=3 \\ 1+2.5^{y-x} + 5^{z-x}=2^2.3^2=36 = 1 + 35 \end{matrix}\right.

2. 5 y x + 5 z x = 35 \Rightarrow 2.5^{y-x} + 5^{z-x}=35

5 y x ( 2 + 5 z y ) = 35 = 5. ( 2 + 5 ) \Leftrightarrow 5^{y-x}(2 + 5^{z-y})=35 = 5.(2+5)

{ 5 y x = 5 1 y x = 1 y = x + 1 = 3 + 1 = 4 2 + 5 z y = 2 + 5 1 z y = 1 z = y + 1 = 4 + 1 = 5 \Rightarrow \left\{\begin{matrix} 5^{y-x}=5^1 \Leftrightarrow y-x=1 \Leftrightarrow y=x+1=3+1=4\\ 2 + 5^{z-y} = 2+5^1 \Rightarrow z-y=1 \Leftrightarrow z=y+1=4+1=5 \end{matrix}\right.

Therefore, we have x = 3 , y = 4 , z = 5 x=3,y=4,z=5 . Comparing the result to the condition x < y < z x<y<z , we can see that the result satisfies the condition.

Hence, the equation has 1 solution, that is ( x , y , z ) = ( 3 , 4 , 5 ) (x,y,z)=(3,4,5) . Therefore the answer is x + y + z = 3 + 4 + 5 = 12 x+y+z = 3+4+5= \boxed{12}

Ahmed Pro
Jul 31, 2020

Just convert 4500 to the base of 5 \textit{Just convert 4500 to the base of 5}

4500 = 000121

  • That mean 4500 = 5 3 5^3 + 2× 5 4 5^4 + 5 5 5^5

  • So x+y+z=3+4+5= 12 \boxed{12} E a s y P e a s y \color{#D61F06}{Easy Peasy} !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...