Confidence Booster

Algebra Level 5

1 x 1 4 x 2 + 4 x 3 1 x 4 < 1 30 \large \dfrac{1}{x-1}-\dfrac{4}{x-2}+\dfrac{4}{x-3}-\dfrac{1}{x-4} < \dfrac{1}{30}

How many natural numbers less than 10 satisfy the above equation?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 26, 2017

f ( x ) = 1 x 1 4 x 2 + 4 x 3 1 x 4 Let u = x 5 2 = 1 u + 3 2 4 u + 1 2 + 4 u 1 2 1 u 3 2 = 4 u 2 1 4 3 u 2 9 4 = u 2 33 4 u 4 5 2 u 2 + 9 16 = 16 u 2 132 16 u 4 40 u 2 + 9 \begin{aligned} f(x) & = \frac 1{x-1} - \frac 4{x-2} + \frac 4{x-3} - \frac 1{x-4} & \small \color{#3D99F6} \text{Let }u = x-\frac 52 \\ & = \color{#3D99F6} \frac 1{u+\frac 32}{\color{#D61F06} - \frac 4{u+\frac 12} + \frac 4{u-\frac 12}} - \frac 1{u-\frac 32} \\ & = \color{#D61F06} \frac 4{u^2-\frac 14} \color{#3D99F6} - \frac 3{u^2-\frac 94} \\ & = \frac {u^2-\frac {33}4}{u^4-\frac 52 u^2+\frac 9{16}} \\ & = \frac {16u^2-132}{16u^4-40 u^2+9} \end{aligned}

Now we have:

16 u 2 132 16 u 4 40 u 2 + 9 < 1 30 16 u 4 40 u 2 + 9 > 480 u 2 3960 16 u 4 520 u 2 + 3969 > 0 ( 4 u 2 49 ) ( 4 u 2 81 ) > 0 \begin{aligned} \frac {16u^2-132}{16u^4-40 u^2+9} & < \frac 1{30} \\ 16u^4-40 u^2+9 & > 480u^2 - 3960 \\ 16u^4-520u^2 + 3969 & > 0 \\ (4u^2-49)(4u^2-81) & > 0 \end{aligned}

{ u < 7 2 x < 6 u > 9 2 x > 7 \implies \begin{cases} u < \frac 72 & \implies x < 6 \\ u > \frac 92 & \implies x > 7 \end{cases}

We note that f ( x ) f(x) is not defined when x = 1 , 2 , 3 , 4 x = 1,2,3,4 . The acceptable x x are 5, 8 and 9; that is 3 \boxed{3} natural numbers.

Đức Huy Là Ta
Aug 27, 2014

x can't be 1; 2; 3 or 4 as the equation will go wrong. So we replace x with 5; 6; 7; 8; 9. And we shall have the final answer: 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...