∫ 1 e ∂ x ∂ sin ( ln ∣ x ∣ ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First of all, you can cancel this derivative with the integration, and just apply the limits into the derivativent. sin ( ln e ) − sin ( ln 1 ) = sin 1 − sin 0 , then you calculate the results sin 1 ≈ 0 . 8 4 1 4 7 1 .
If f = f ( x ) , then d f = ∂ x ∂ f d x .
Hence, ∫ 1 e ∂ x ∂ sin ( ln ∣ x ∣ ) d x = ∫ 1 e d ( sin ( ln ∣ x ∣ ) )
According to FTOC II, we finally obtain
∫ 1 e ∂ x ∂ sin ( ln ∣ x ∣ ) d x = ∫ 1 e d ( sin ( ln ∣ x ∣ ) ) = sin ( ln ∣ e ∣ ) − sin ( ln ∣ 1 ∣ ) = sin 1 ≈ 0 . 8 4 1
Problem Loading...
Note Loading...
Set Loading...
∫ 1 e ∂ x ∂ sin ( ln ∣ x ∣ ) d x = sin ( ln ∣ x ∣ ) ∣ ∣ ∣ ∣ 0 e = sin ( ln e ) − sin ( ln 1 ) = sin 1 − sin 0 = sin 1 ≈ 0 . 8 4 1