Solve the integral thing 2

Calculus Level 3

For some a > 1 a>1

π 2 π 2 1 ( a + sin ( x ) ) 2 d x = π a \int_{-\frac{\pi }{2}}^{\frac{\pi }{2}} \frac{1}{(a+\sin (x))^2} \, dx=\pi a

Submit a a .


The answer is 1.41421.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By letting x x to x -x , we get

I = π 2 π 2 1 ( a + sin x ) 2 d x = 2 × 0 π 2 a 2 + sin 2 x ( a 2 sin 2 x ) 2 d x \displaystyle I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\dfrac{1}{(a+\sin{x})^{2}}dx}=2 \times \int_{0}^{\frac{\pi}{2}}{\frac{a^{2}+\sin^{2}{x}}{(a^{2}-\sin^{2}{x})^{2}}dx}

Now, let tan x = t \displaystyle \tan{x}=t then,

I = 2 × 0 ( a 2 + 1 ) t 2 + a 2 ( ( a 2 1 ) t 2 + a 2 ) 2 d t \displaystyle I=2 \times \int_{0}^{\infty}{\dfrac{(a^{2}+1)t^{2}+a^{2}}{((a^{2}-1)t^{2}+a^{2})^{2}}dt}

0 ( a 2 + 1 ) t 2 + a 2 ( ( a 2 1 ) t 2 + a 2 ) 2 d t = a 2 + 1 a 2 1 × 0 1 ( ( a 2 1 ) t 2 + a 2 ) d t + 2 a 2 a 2 1 0 1 ( ( a 2 1 ) t 2 + a 2 ) 2 d t \displaystyle \int_{0}^{\infty}{\dfrac{(a^{2}+1)t^{2}+a^{2}}{((a^{2}-1)t^{2}+a^{2})^{2}}dt}=\dfrac{a^{2}+1}{a^{2}-1} \times \int_{0}^{\infty}{\dfrac{1}{((a^{2}-1)t^{2}+a^{2})}dt}+\dfrac{-2a^{2}}{a^{2}-1}\int_{0}^{\infty}{\dfrac{1}{((a^{2}-1)t^{2}+a^{2})^{2}}dt}

Those are easy to integrate by trigonometric substitution, we get

I = π a ( a 2 1 ) 3 / 2 = π a \displaystyle I=\dfrac{\pi a}{(a^{2}-1)^{3/2}}=\pi a so,

a = 2 1.41421 \displaystyle a=\boxed{\sqrt{2}} \approx 1.41421

Mark Hennings
Dec 23, 2017

We have I a = 1 2 π 1 2 π d x ( a + sin x ) 2 = 1 2 π π d x ( a + sin x ) 2 = 2 i z = 1 z d z ( z 2 + 2 i a z 1 ) 2 = 2 i z = 1 z d z ( z λ + ) 2 ( z λ ) 2 I_a \; = \; \int_{-\frac12\pi}^{\frac12\pi} \frac{dx}{(a+ \sin x)^2} \; = \; \tfrac12\int_{-\pi}^\pi \frac{dx}{(a + \sin x)^2}\; = \; 2i\int_{|z|=1} \frac{z\,dz}{(z^2 + 2iaz - 1)^2} \; = \; 2i\int_{|z|=1}\frac{z\,dz}{(z-\lambda_+)^2(z - \lambda_-)^2} where λ ± = a i ± i a 2 1 \lambda_\pm \; = \; -ai \pm i\sqrt{a^2-1} Thus I a = 4 π R e s z = λ + z ( z λ + ) 2 ( z λ ) 2 = 4 π d d z ( z ( z λ ) 2 ) z = λ + = 4 π z + λ ( z λ ) 3 z = λ + = 4 π λ + λ ( λ + λ ) 3 = π a ( a 2 1 ) 3 2 I_a \; = \; -4\pi \mathrm{Res}_{z=\lambda_+} \frac{z}{(z-\lambda_+)^2(z - \lambda_-)^2} \; = \; -4\pi\left.\frac{d}{dz}\left(\frac{z}{(z-\lambda_-)^2}\right)\right|_{z=\lambda_+} \; = \; 4\pi\left. \frac{z+\lambda_-}{(z - \lambda_-)^3}\right|_{z = \lambda_+} \; = \; 4\pi\frac{\lambda_+ \lambda_-}{(\lambda_+ - \lambda_-)^3} \; = \; \frac{\pi a}{(a^2 - 1)^{\frac32}} for any a > 1 a >1 , and hence I = π a I = \pi a when a 2 1 = 1 a^2 -1 = 1 , and hence when a = 2 a = \boxed{\sqrt{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...