Solve the integral thing

Calculus Level 3

For some a > 1 a>1

π 2 π 2 1 a + sin ( x ) d x = π a \large \int_{-\frac{\pi }{2}}^{\frac{\pi }{2}} \frac{1}{a+\sin (x)} \, dx=\frac{\pi }{\sqrt{a}}

Submit a a .


The answer is 1.61803.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 24, 2017

Likely to have a simpler solution, but mine is as follows:

I = π 2 π 2 d x a + sin x Using t = tan x 2 d t = 1 2 sec 2 x 2 = 1 1 2 d t a t 2 + 2 t + a sin x = 2 t 1 + t 2 = 2 a 1 1 d t t 2 + 2 a t + 1 = 2 a 1 1 d t ( t + 1 a ) 2 1 a 2 + 1 = 2 a a 2 1 1 1 d t a 2 a 2 1 ( t + 1 a ) 2 + 1 Let u = a a 2 1 ( t + 1 a ) = 2 a 2 1 a 1 a 2 1 a + 1 a 2 1 d u u 2 + 1 = 2 a 2 1 tan 1 u a 1 a 2 1 a + 1 a 2 1 = 2 a 2 1 ( tan 1 a + 1 a 2 1 + tan 1 a 1 a 2 1 ) = 2 a 2 1 tan 1 ( a + 1 a 2 1 + a 1 a 2 1 1 a + 1 a 2 1 × a 1 a 2 1 ) = 2 a 2 1 × π 2 = π a 2 1 \begin{aligned} I & = \int_{-\frac \pi 2}^\frac \pi 2 \frac {dx}{a+\sin x} & \small \color{#3D99F6} \text{Using }t = \tan \frac x2 \implies dt = \frac 12 \sec^2 \frac x2 \\ & = \int_{-1}^1 \frac {2\ dt}{at^2+2t+a} & \small \color{#3D99F6} \implies \sin x = \frac {2t}{1+t^2} \\ & = \frac 2a \int_{-1}^1 \frac {dt}{t^2+\frac 2a t+1} \\ & = \frac 2a \int_{-1}^1 \frac {dt}{\left(t+\frac 1a\right)^2 -\frac 1{a^2} +1} \\ & = \frac {2a}{a^2-1} \int_{-1}^1 \frac {dt}{\frac {a^2}{a^2-1} \left(t+\frac 1a\right)^2 +1} & \small \color{#3D99F6} \text{Let } u = \frac a{\sqrt{a^2-1}} \left(t+\frac 1a\right) \\ & = \frac 2{\sqrt{a^2-1}} \int_{-\frac {a-1}{\sqrt{a^2-1}}}^{\frac {a+1}{\sqrt{a^2-1}}} \frac {du}{u^2+1} \\ & = \frac 2{\sqrt{a^2-1}} \tan^{-1} u\ \bigg|_{-\frac {a-1}{\sqrt{a^2-1}}}^{\frac {a+1}{\sqrt{a^2-1}}} \\ & = \frac 2{\sqrt{a^2-1}} \left(\tan^{-1} \frac {a+1}{\sqrt{a^2-1}} + \tan^{-1} \frac {a-1}{\sqrt{a^2-1}}\right) \\ & = \frac 2{\sqrt{a^2-1}} \tan^{-1} \left(\frac {\frac {a+1}{\sqrt{a^2-1}} + \frac {a-1}{\sqrt{a^2-1}}}{1- \frac {a+1}{\sqrt{a^2-1}} \times \frac {a-1}{\sqrt{a^2-1}}}\right) \\ & = \frac 2{\sqrt{a^2-1}} \times \frac \pi 2 \\ & = \frac \pi{\sqrt{a^2-1}} \end{aligned}

Therefore, we have a 2 1 = a a^2 - 1 = a . a 2 a 1 = 0 \implies a^2-a-1=0 , a = 1 + 5 2 1.618 = φ \implies a = \dfrac {1+\sqrt 5}2 \approx \boxed{1.618} = \varphi , the golden ratio .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...