Solve the system of equations by determinants

Algebra Level 3

Solve the system of equations using determinants

{ x 2 y + z + 3 w = 7 x + y + 3 z + 2 w = 6 x + y 2 z + w = 9 3 x + 4 y + 4 z + 2 w = 16 \large {\begin{cases} x-2y+z+3w=7 \\ x+y+3z+2w=6 \\ x+y-2z+w=9 \\ 3x+4y+4z+2w=16 \end{cases}} Give your answer as ( x + y + z + w ) 2 (x+y+z+w)^2 .

49 64 25 36 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using the principle of minors to evaluate determinants, we have

D = 1 2 1 3 1 1 3 2 1 1 2 1 3 4 4 2 = 1 1 3 2 1 3 1 2 1 1 2 4 4 2 4 4 1 2 1 3 2 1 1 2 1 1 2 4 4 2 4 4 + 1 2 1 3 2 1 1 3 2 1 3 4 4 2 4 4 3 2 1 3 2 1 1 3 2 1 3 1 2 1 1 2 D= \begin{vmatrix} 1 & -2 & 1 & 3 \\ 1 & 1 & 3 & 2 \\ 1 & 1 & -2 & 1 \\ 3 & 4 & 4 & 2 \end{vmatrix}=1 \begin{vmatrix} 1 & 3 & 2 & 1 & 3 \\ 1 & -2 & 1 & 1 & -2 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}-1 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & -2 & 1 & 1 & -2 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}+1 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & 3 & 2 & 1 & 3 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}-3 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & 3 & 2 & 1 & 3 \\ 1 & -2 & 1 & 1 & -2 \end{vmatrix}

D = 1 [ 4 + 12 + 8 ( 16 + 4 + 6 ) ] 1 [ 8 + 4 + 12 ( 24 8 + 2 ) ] + 1 [ 12 + 8 + 12 ( 36 16 + 2 ) ] 3 [ 6 + 2 6 ( 9 + 8 + 1 ) ] D=1[-4+12+8-(-16+4+6)]-1[8+4+12-(-24-8+2)]+1[-12+8+12-(36-16+2)]-3[-6+2-6-(9+8+1)]

D = 22 54 14 + 84 = 38 D=22-54-14+84=38

N x = 7 2 1 3 6 1 3 2 9 1 2 1 16 4 4 2 = 7 1 3 2 1 3 1 2 1 1 2 4 4 2 4 4 6 2 1 3 2 1 1 2 1 1 2 4 4 2 4 4 + 9 2 1 3 2 1 1 3 2 1 3 4 4 2 4 4 16 2 1 3 2 1 1 3 2 1 3 1 2 1 1 2 N_x= \begin{vmatrix} 7 & -2 & 1 & 3 \\ 6 & 1 & 3 & 2 \\ 9 & 1 & -2 & 1 \\ 16 & 4 & 4 & 2 \end{vmatrix}=7 \begin{vmatrix} 1 & 3 & 2 & 1 & 3 \\ 1 & -2 & 1 & 1 & -2 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}-6 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & -2 & 1 & 1 & -2 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}+9 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & 3 & 2 & 1 & 3 \\ 4 & 4 & 2 & 4 & 4 \end{vmatrix}-16 \begin{vmatrix} -2 & 1 & 3 & -2 & 1 \\ 1 & 3 & 2 & 1 & 3 \\ 1 & -2 & 1 & 1 & -2 \end{vmatrix}

N x = 7 [ 4 + 12 + 8 ( 16 + 4 + 6 ) ] 6 [ 8 + 4 + 12 ( 24 8 + 2 ) ] + 9 [ 12 + 8 + 12 ( 36 16 + 2 ) ] 16 [ 6 + 2 6 ( 9 + 8 + 1 ) ] N_x=7[-4+12+8-(-16+4+6)]-6[8+4+12-(-24-8+2)]+9[-12+8+12-(36-16+2)]-16[-6+2-6-(9+8+1)]

N x = 154 324 126 + 448 = 152 N_x=154-324-126+448=152

N y = 1 7 1 3 1 6 3 2 1 9 2 1 3 16 4 2 = 1 6 3 2 6 3 9 2 1 9 2 16 4 2 16 4 1 7 1 3 7 1 9 2 1 9 2 16 4 2 16 4 + 1 7 1 3 7 1 6 3 2 6 3 16 4 2 16 4 3 7 1 3 7 1 6 3 2 6 3 9 2 1 9 2 N_y= \begin{vmatrix} 1 & 7 & 1 & 3 \\ 1 & 6 & 3 & 2 \\ 1 & 9 & -2 & 1 \\ 3 & 16 & 4 & 2 \end{vmatrix}=1 \begin{vmatrix} 6 & 3 & 2 & 6 & 3 \\ 9 & -2 & 1 & 9 & -2 \\ 16 & 4 & 2 & 16 & 4 \end{vmatrix}-1 \begin{vmatrix} 7 & 1 & 3 & 7 & 1 \\ 9 & -2 & 1 & 9 & -2 \\ 16 & 4 & 2 & 16 & 4 \end{vmatrix}+1 \begin{vmatrix} 7 & 1 & 3 & 7 & 1 \\ 6 & 3 & 2 & 6 & 3 \\ 16 & 4 & 2 & 16 & 4 \end{vmatrix}-3 \begin{vmatrix} 7 & 1 & 3 & 7 & 1 \\ 6 & 3 & 2 & 6 & 3 \\ 9 & -2 & 1 & 9 & -2 \end{vmatrix}

N y = 1 [ 24 + 48 + 72 ( 64 + 24 + 54 ) ] 1 [ 28 + 16 + 108 ( 96 + 28 + 18 ) ] + 1 [ 42 + 32 + 72 ( 144 + 56 + 12 ) ] 3 [ 21 + 18 36 ( 81 28 + 6 ) ] N_y=1[-24+48+72-(-64+24+54)]-1[-28+16+108-(-96+28+18)]+1[42+32+72-(144+56+12)]-3[21+18-36-(81-28+6)]

N y = 82 146 66 + 168 = 38 N_y=82-146-66+168=38

N z = 1 2 7 3 1 1 6 2 1 1 9 1 3 4 16 2 = 1 1 6 2 1 6 1 9 1 1 9 4 16 2 4 16 1 2 7 3 2 7 1 9 1 1 9 4 16 2 4 16 + 1 2 7 3 2 7 1 6 2 1 6 4 16 2 4 16 3 2 7 3 2 7 1 6 2 1 6 1 9 1 1 9 N_z= \begin{vmatrix} 1 & -2 & 7 & 3 \\ 1 & 1 & 6 & 2 \\ 1 & 1 & 9 & 1 \\ 3 & 4 & 16 & 2 \end{vmatrix}=1 \begin{vmatrix} 1 & 6 & 2 & 1 & 6 \\ 1 & 9 & 1 & 1 & 9 \\ 4 & 16 & 2 & 4 & 16 \end{vmatrix}-1 \begin{vmatrix} -2 & 7 & 3 & -2 & 7 \\ 1 & 9 & 1 & 1 & 9 \\ 4 & 16 & 2 & 4 & 16 \end{vmatrix}+1 \begin{vmatrix} -2 & 7 & 3 & -2 & 7 \\ 1 & 6 & 2 & 1 & 6 \\ 4 & 16 & 2 & 4 & 16 \end{vmatrix}-3 \begin{vmatrix} -2 & 7 & 3 & -2 & 7 \\ 1 & 6 & 2 & 1 & 6 \\ 1 & 9 & 1 & 1 & 9 \end{vmatrix}

N z = 1 [ 18 + 24 + 32 ( 72 + 16 + 12 ) ] 1 [ 36 + 28 + 48 ( 108 32 + 14 ) ] + 1 [ 24 + 56 + 48 ( 72 64 + 14 ) ] 3 [ 12 + 14 + 27 ( 18 36 + 7 ) ] N_z=1[18+24+32-(72+16+12)]-1[-36+28+48-(108-32+14)]+1[-24+56+48-(72-64+14)]-3[-12+14+27-(18-36+7)]

N z = 26 + 50 + 58 120 = 38 N_z=-26+50+58-120=-38

N w = 1 2 1 7 1 1 3 6 1 1 2 9 3 4 4 16 = 1 1 3 6 1 3 1 2 9 1 2 4 4 16 4 4 1 2 1 7 2 1 1 2 9 1 2 4 4 16 4 4 + 1 2 1 7 2 1 1 3 9 1 3 4 4 16 4 4 3 2 1 7 2 1 1 3 6 1 3 1 2 9 1 2 N_w= \begin{vmatrix} 1 & -2 & 1 & 7 \\ 1 & 1 & 3 & 6 \\ 1 & 1 & -2 & 9 \\ 3 & 4 & 4 & 16 \end{vmatrix}=1 \begin{vmatrix} 1 & 3 & 6 & 1 & 3 \\ 1 & -2 & 9 & 1 & -2 \\ 4 & 4 & 16 & 4 & 4 \end{vmatrix}-1 \begin{vmatrix} -2 & 1 & 7 & -2 & 1 \\ 1 & -2 & 9 & 1 & -2 \\ 4 & 4 & 16 & 4 & 4 \end{vmatrix}+1 \begin{vmatrix} -2 & 1 & 7 & -2 & 1 \\ 1 & 3 & 9 & 1 & 3 \\ 4 & 4 & 16 & 4 & 4 \end{vmatrix}-3 \begin{vmatrix} -2 & 1 & 7 & -2 & 1 \\ 1 & 3 & 6 & 1 & 3 \\ 1 & -2 & 9 & 1 & -2 \end{vmatrix}

N w = 1 [ 32 + 108 + 24 ( 48 + 36 + 48 ) ] 1 ( 64 + 36 + 28 ( 56 72 + 16 ) ] + 1 [ 96 + 24 + 28 ( 84 48 + 16 ) ] 3 [ 54 + 6 14 ( 21 + 24 + 9 ) ] N_w=1[-32+108+24-(-48+36+48)]-1(64+36+28-(-56-72+16)]+1[-96+24+28-(84-48+16)]-3[-54+6-14-(21+24+9)]

N w = 64 240 96 + 348 = 76 N_w=64-240-96+348=76

x = N x D = 152 38 = 4 x=\dfrac{N_x}{D}=\dfrac{152}{38}=4

y = N y D = 38 38 = 1 y=\dfrac{N_y}{D}=\dfrac{38}{38}=1

z = N z D = 38 38 = 1 z=\dfrac{N_z}{D}=\dfrac{-38}{38}=-1

w = N w D = 76 38 = 2 w=\dfrac{N_w}{D}=\dfrac{76}{38}=2

The desired answer is ( 4 + 1 1 + 25 ) 2 = 36 (4+1-1+25)^2=\boxed{36}

Notes:

D D = determinant of the coefficients of the variables

N x N_x = determinants taken from D D replacing the coefficients of x x by their corresponding constant terms leaving all other terms unchanged

N y N_y = determinants taken from D D replacing the coefficients of y y by their corresponding constant terms leaving all other terms unchanged

N z N_z = determinants taken from D D replacing the coefficients of z z by their corresponding constant terms leaving all other terms unchanged

N w N_w = determinants taken from D D replacing the coefficients of w w by their corresponding constant terms leaving all other terms unchanged

wow, I must appreciate your work, this is amazing ;)

Rakshit Joshi - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...