Solve this equation

Geometry Level 3

Find the number of solutions in ( π 2 , π 2 ) \large{\left(-\frac{\pi}{2},\frac{\pi}{2} \right)} for the equation

3 tan 2 x 4 tan 3 x = tan 2 3 x tan 2 x \large{3 \tan 2x-4 \tan 3x=\tan^{2} 3x \tan 2x}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Nov 9, 2015

3 ( tan 2 x tan 3 x ) = tan 3 x ( 1 + tan 3 x tan 2 x ) \large{3(\tan 2x-\tan 3x)=\tan 3x(1+\tan 3x \tan 2x)}

3 ( tan 3 x tan 2 x 1 + tan 3 x tan 2 x ) = tan 3 x \large{-3\left(\frac{\tan 3x-\tan 2x}{1+\tan 3x \tan 2x}\right) =\tan 3x}

3 tan x = 3 tan x tan 3 x 1 3 tan x \large{-3 \tan x =\frac{3 \tan x-\tan ^{3} x}{1-3 \tan x}}

tan x = 0 tan 2 ( x ) = 3 5 \large{\tan x=0 \qquad \quad \tan^{2} (x)=\frac{3}{5}}

x = 0 , ± arctan ( 3 5 ) \large{x=0, \pm \arctan \left(\sqrt{\frac{3}{5}} \right)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...