Equation involving exponents

Algebra Level 2

Solve the equation below.

4 x + 1 0 x = 2 5 x 4^x + 10^x = 25^x


The answer is 0.52517.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Nov 19, 2019

4 x + 1 0 x = 2 5 x Divide both sides by 1 0 x ( 2 5 ) x + 1 = ( 5 2 ) x Multioly both sides by ( 2 5 ) x ( 2 5 ) 2 x + ( 2 5 ) x 1 = 0 and add both sides by 1 ( 2 5 ) x = 1 + 5 2 Since ( 2 5 ) x > 0 x ( ln 2 ln 5 ) = ln ( 5 1 ) ln 2 \begin{aligned} 4^x+10^x & = 25^x & \small \blue{\text{Divide both sides by }10^x} \\ \left(\frac 25\right)^x + 1 & = \left(\frac 52\right)^x & \small \blue{\text{Multioly both sides by }\left(\frac 25\right)^x} \\ \left(\frac 25\right)^{2x} + \left(\frac 25\right)^x - 1 & = 0 & \small \blue{\text{and add both sides by }-1} \\ \implies \left(\frac 25\right)^x & = \frac {-1 + \sqrt 5}2 & \small \blue{\text{Since }\left(\frac 25\right)^x > 0} \\ x (\ln 2 - \ln 5) & = \ln (\sqrt 5 - 1) - \ln 2 \end{aligned}

x = ln 2 ln ( 5 1 ) ln 5 ln 2 0.525 \begin{aligned} \implies x & = \frac {\ln 2 - \ln (\sqrt 5-1)}{\ln 5-\ln 2} \approx \boxed{0.525} \end{aligned}

I did the same .

Nikola Alfredi - 1 year, 3 months ago
Mark Hennings
Nov 18, 2019

( 2 x + 1 2 5 x ) 2 = 5 4 2 5 x 2 x + 1 2 5 x = 1 2 5 5 x 2 x + 1 = ( 5 1 ) 5 x ( x + 1 ) ln 2 = ln ( 5 1 ) + x ln 5 x = ln 2 ln ( 5 1 ) ln 5 ln 2 \begin{aligned} \big(2^x + \tfrac12\cdot5^x\big)^2 & = \; \tfrac54 \cdot25^x \\ 2^x + \tfrac125^x & = \; \tfrac12\sqrt{5}\cdot 5^x \\ 2^{x+1} & = \; (\sqrt{5}-1)5^x \\ (x+1) \ln 2 & = \; \ln(\sqrt{5}-1) + x\ln 5 \\ x & = \; \boxed{\frac{\ln2 - \ln(\sqrt{5}-1)}{\ln5 - \ln2}} \end{aligned}

Srinivasa Gopal
Nov 18, 2019

Divide the original equation by 4^x the resulting equation will look like

1 + (10^x/4^x) = 25^x/4^x =

1 + (5/2)^x = ((5/2)^x)^2

Let (5/2)^x = t

The equation becomes

1+t = t^2 or t^2 - t -1 = 0 or t = (1+/- sqrt(5))/2

So (5/2)^x = 1.62

x * ln(2.5) = ln(1.62) so x = 0.52517

Richard Desper
Nov 20, 2019

Look for root to 2 5 x 1 0 x 4 x 25^x - 10^x - 4^x using Excel.

2 5 1 1 0 1 4 1 = 11 25^1 - 10^1 - 4^1 = 11

2 5 0 1 0 0 4 0 = 1 25^0 - 10^0 - 4^0 = -1

2 5 0.5 1 0 0.5 4 0.5 = 0.16228 , 25^{0.5} - 10^{0.5} - 4^{0.5} = -0.16228,

... (skipping past computations for x = 0.6 , 0.55.0.53 x=0.6, 0.55. 0.53 , and 0.52 0.52 )

2 5 0.525 1 0 0.525 4 0.525 = 0.00119 25^{0.525} - 10^{0.525} - 4^{0.525} = -0.00119

2 5 0.526 1 0 0.526 4 0.526 = 0.005685 25^{0.526} - 10^{0.526} - 4^{0.526} = 0.005685

So, the root is between 0.525 0.525 and 0.526 0.526 , and looks to be closer to the former.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...