Solve this simple problem 'Simply'

Algebra Level 2

If, x + y 2 = y + z 3 = z + x 4 \frac{x+y}{2}=\frac{y+z}{3}=\frac{z+x}{4} Then x : y : z x:y:z can be expressed as a:b:c where a , b a, b & c c are positive co-prime integers. What's a + b + c a+b+c ? ( x , y , z x, y, z are positive reals.)


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sanjeet Raria
Sep 6, 2014

Here's the 'Simple' solution-

E a c h R a t i o = Sum of the Numerators Sum of the Denominators = 2 ( x + y + z ) 9 = ( x + y + z ) 9 / 2 Each Ratio =\frac{\textit {Sum of the Numerators}}{\textit {Sum of the Denominators}}=\frac{2(x+y+z)}{9}=\frac{(x+y+z)}{9/2} = ( x + y + z ) ( y + z ) 9 2 3 = ( x + y + z ) ( x + z ) 9 2 4 = ( x + y + z ) ( x + y ) 9 2 2 =\frac{(x+y+z)-(y+z)}{\frac{9}{2}-3}=\frac{(x+y+z)-(x+z)}{\frac{9}{2}-4}=\frac{(x+y+z)-(x+y)}{\frac{9}{2}-2} = x 3 / 2 = y 1 / 2 = z 5 / 2 =\frac{x}{3/2}=\frac{y}{1/2}=\frac{z}{5/2} = > x : y : z = 3 : 1 : 5 => x:y:z=3:1:5 Ans. 9 \boxed9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...