Solve this trignometric /algebraic equation

Geometry Level 2

Find the positive value of tan x \tan x satisfying sin x = cos ( 2 x ) \sin x = \cos(2x) .


The answer is 0.577.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

sin x = cos 2 x sin x = 1 2 sin 2 x 2 sin 2 x + sin x 1 = 0 ( 2 sin x 1 ) ( sin x + 1 ) = 0 \begin{aligned} \sin x & = \cos 2x \\ \sin x & = 1 - 2\sin^2 x \\ \implies 2\sin^2 x + \sin x - 1 & = 0 \\ (2\sin x - 1)(\sin x + 1) & = 0 \end{aligned}

{ 2 sin x 1 = 0 sin x = 1 2 x = π 6 tan π 6 = 1 3 0.577 sin x + 1 = 0 sin x = 1 x = π 2 tan ( π 2 ) = Infinite \implies \begin{cases} 2\sin x - 1 = 0 & \implies \sin x = \frac 12 & \implies x = \frac \pi 6 & \implies \tan \frac \pi 6 = \frac 1{\sqrt 3} \approx \boxed{0.577} \\ \sin x + 1 = 0 & \implies \sin x = -1 & \implies x = -\frac \pi 2 & \implies \tan \left(- \frac \pi 2\right) = - \infty \small \color{#D61F06} \text{ Infinite} \end{cases}

sin x = cos ( 2 x ) cos ( π 2 x ) = cos ( 2 x ) \sin x = \cos(2x) \Rightarrow \cos(\dfrac {π}{2} - x) = \cos(2x)

π 2 x = 2 x x = π 6 \dfrac {π}{2} - x = 2x \Rightarrow x = \dfrac {π}{6}

Also, π 2 x = 2 x x = π 2 \dfrac {π}{2} - x = -2x \Rightarrow x = -\dfrac {π}{2} .Since, cos ( β ) = cos ( β ) \cos(β) = \cos(-β)

tan ( π 2 ) = \tan(-\dfrac {π}{2}) = -\infty ,which is negative. So, not the answer.

tan ( π 6 ) = 1 3 = 0.57735026919 \tan(\dfrac {π}{6}) = \dfrac {1}{\sqrt{3}} = \boxed{0.57735026919}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...