Matrix Time

Algebra Level 4

Given P = [ 3 2 1 2 1 2 3 2 ] P = \begin{bmatrix} \cfrac { \sqrt { 3 } }{ 2 } & \cfrac { 1 }{ 2 } \\ \cfrac { -1 }{ 2 } & \cfrac { \sqrt { 3 } }{ 2 } \end{bmatrix} A = [ 1 0 0 1 ] A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} Q = P A P T Q =\quad PA{ P }^{ T }

Evaluate P T Q 2005 P { P }^{ T }{ Q }^{ 2005 }P

[ 1 0 0 1 ] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} [ 1 2005 2005 1 ] \begin{bmatrix} 1 & 2005 \\ 2005 & 1 \end{bmatrix} [ 1 0 2005 1 ] \begin{bmatrix} 1 & 0 \\ 2005 & 1 \end{bmatrix} [ 1 2005 0 1 ] \begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Feb 5, 2015

We begin by rewriting the given matrix,

P = [ 3 2 1 2 1 2 3 2 ] = [ sin π 3 cos π 3 cos π 3 sin π 3 ] P=\begin{bmatrix} \dfrac {\sqrt{3}}{2} & \dfrac{1}{2} \\ \dfrac {-1}{2} & \dfrac {\sqrt{3}}{2} \end{bmatrix}=\begin{bmatrix} \sin \frac{\pi}{3} & \cos \frac{\pi}{3} \\ -\cos \frac{\pi}{3} & \sin \frac{\pi}{3} \end{bmatrix}

Also, we can see that, A = [ 1 0 0 1 ] = I A=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=I , where I I is the 2 × 2 2\times 2 identity matrix. We will use the identity: sin 2 x + cos 2 x = 1 x R \sin^2x+\cos^2x=1~\forall x\in \mathbb{R} while evaluating Q Q and then the final matrix asked in the question (let's call it X X ).

Also, we will use the trivial identities Y = Y I Y = I Y Y Y=YI_Y=I_YY , ( I Y ) n = I Y n N (I_Y)^n=I_Y~\forall n\in \mathbb{N} , ( X Y ) T = Y T X T (XY)^T=Y^TX^T and ( I Y ) T = I Y (I_Y)^T=I_Y where X , Y X,Y are square matrices and I Y I_Y is the corresponding identity matrix for Y Y . Now, coming onto the calculations,

Q = P A P T = ( P I ) P T = P P T = [ sin π 3 cos π 3 cos π 3 sin π 3 ] [ sin π 3 cos π 3 cos π 3 sin π 3 ] Q=PAP^T=(PI)P^T=PP^T=\begin{bmatrix} \sin \frac{\pi}{3} & \cos \frac{\pi}{3} \\ -\cos \frac{\pi}{3} & \sin \frac{\pi}{3} \end{bmatrix}\cdot\begin{bmatrix} \sin \frac{\pi}{3} & -\cos \frac{\pi}{3} \\ \cos \frac{\pi}{3} & \sin \frac{\pi}{3} \end{bmatrix}

After matrix multiplication, we will obtain Q = P P T = I Q=PP^T=I

Now, Q = I Q 2005 = I 2005 = I Q=I\implies Q^{2005}=I^{2005}=I . So,

X = P T ( I P ) = P T P = ( P P T ) T = Q T = I T = I = [ 1 0 0 1 ] X=P^T(IP)=P^TP=(PP^T)^T=Q^T=I^T=I=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}

So, X = [ 1 0 0 1 ] X=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} is our answer.

Krishna Shankar
Dec 26, 2015

From the given data,its pretty clear that,

A=I.

Q=PAP"=PP",since A is an identity matrix. And also PP"=I,(By solving) ,hence we can conclude that P is an Orthogonal Matrix.

Hence,

P"Q^2500 P=I.

Note: P =Given matrix. P"=Transpose of P. I=Identity matrix.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...