Solve without calculator!

Algebra Level 3

( 1 + 5 2 ) 15 = ? \large \left\lfloor\left(\frac{1 + \sqrt{5}}{2}\right)^{15}\right\rfloor = \, ?


Notation: \lfloor \cdot \rfloor denotes the floor function .

2207 843 521 1364

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 12, 2017

Similar to Arpan Mathur 's approach.

Note that φ = 1 + 5 2 \varphi = \dfrac {1+\sqrt 5}2 is the golden ratio. Hence 1 φ = 2 1 + 5 = 5 1 2 \dfrac 1\varphi = \dfrac 2{1+\sqrt 5} = \dfrac {\sqrt 5-1}2 φ 1 φ = 1 \implies \varphi - \dfrac 1\varphi = 1 . Then we have:

( φ 1 φ ) 2 = 1 2 φ 2 2 + 1 φ 2 = 1 φ 2 + 1 φ 2 = 3 ( φ 1 φ ) ( φ 2 + 1 φ 2 ) = 1 × 3 φ 3 φ + 1 φ 1 φ 3 = 3 φ 3 1 φ 3 = 3 + 1 = 4 ( φ 3 1 φ 3 ) 2 = 16 φ 6 2 + 1 φ 6 = 16 φ 6 + 1 φ 6 = 16 + 2 = 18 ( φ 3 1 φ 3 ) ( φ 6 + 1 φ 6 ) = 4 × 18 φ 9 φ 3 + 1 φ 3 1 φ 9 = 72 φ 9 1 φ 9 = 72 + 4 = 76 ( φ 6 + 1 φ 6 ) ( φ 9 1 φ 9 ) = 18 × 76 φ 15 + φ 3 1 φ 3 1 φ 15 = 1368 φ 15 1 φ 15 = 1368 4 = 1364 Since 1 < 1 φ 15 < 0 φ 15 = 1364 \begin{aligned} \left(\varphi - \frac 1\varphi \right)^2 & = 1^2 \\ \varphi^2 - 2 + \frac 1{\varphi^2} & = 1 \\ \varphi^2 + \frac 1{\varphi^2} & = 3 \\ \left(\varphi - \frac 1\varphi \right) \left(\varphi^2 + \frac 1{\varphi^2} \right) & = 1\times 3 \\ \varphi^3 - \varphi + \frac 1\varphi - \frac 1{\varphi^3} & = 3 \\ \varphi^3 - \frac 1{\varphi^3} & = 3+1 = 4 \\ \left(\varphi^3 - \frac 1{\varphi^3}\right)^2 & = 16 \\ \varphi^6 - 2 + \frac 1{\varphi^6} & = 16 \\ \varphi^6 + \frac 1{\varphi^6} & = 16 + 2 = 18 \\ \left(\varphi^3 - \frac 1{\varphi^3}\right) \left(\varphi^6 + \frac 1{\varphi^6}\right) & = 4 \times 18 \\ \varphi^9 - \varphi^3 + \frac 1{\varphi^3} - \frac 1{\varphi^9} & = 72 \\ \varphi^9 - \frac 1{\varphi^9} & = 72 + 4 = 76 \\ \left(\varphi^6 + \frac 1{\varphi^6}\right) \left(\varphi^9 - \frac 1{\varphi^9}\right) & = 18 \times 76 \\ \varphi^{15} + \varphi^3 - \frac 1{\varphi^3} - \frac 1{\varphi^{15}} & = 1368 \\ \varphi^{15} - \color{#3D99F6}\frac 1{\varphi^{15}} & = 1368 - 4 = 1364 & \small \color{#3D99F6} \text{Since } -1 < \frac 1{\varphi^{15}} < 0 \\ \left \lfloor \varphi^{15} \right \rfloor & = \boxed{1364} \end{aligned}

Arpan Mathur
Feb 11, 2017

Let α = 1 + 5 2 \alpha = \frac{1 + \sqrt{5}}{2} and β = 1 5 2 \beta = \frac{1 - \sqrt{5}}{2} ; We proceed to show that α 15 + β 15 \alpha^{15} + \beta^{15} is an integer.

Notice that α \alpha and β \beta are the roots of the quadratic equation x 2 x 1 = 0 x^2 - x -1 = 0 i.e

α 2 = α + 1 . . . ( 1 ) \alpha^2 = \alpha\ +1 \quad...(1) and β 2 = β + 1 . . . ( 2 ) \beta^2 = \beta+ 1 \quad ...(2) . Multiplying ( 1 ) (1) by α n 2 \alpha^{n-2} and ( 2 ) (2) by β n 2 \beta^{n-2} for some integer n 3 n \geq 3 we get:

α n = α n 1 + α n 2 \alpha^n = \alpha^{n-1} +\alpha^{n-2} and β n = β n 1 + β n 2 α n + β n = ( α n 1 + β n 1 ) + ( α n 2 + β n 2 ) \beta^n = \beta^{n-1} +\beta^{n-2} \Rightarrow \alpha^n + \beta^n = (\alpha^{n-1} + \beta^{n-1}) + (\alpha^{n-2} + \beta^{n-2})

Define L k = α k + β k L_k = \alpha^{k} + \beta^{k} for natural k k . Now L 1 = 1 , L 2 = 3 L_1 = 1, L_2 = 3 and L n = L n 1 + L n 2 L_n = L_{n - 1} + L_{n -2} for n 3 n\geq 3 .(This sequence is called Lucas Sequence.)

The sequence so formed is 1 , 3 , 4 , 7 , 11 , 18 , 29 , 47 , 76 , 123 , 199 , 322 , 521 , 843 , 1364 , 2207 , . . . 1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,... whose 15th term is 1364. Hence L 15 = α 15 + β 15 = 1364 L_{15} = \alpha^{15} + \beta^{15} = 1364 .

Now, α 15 = 1364 β 15 α 15 = 1364 + ( β 15 ) = 1364 + β 15 \alpha^{15} = 1364 - \beta^{15} \Rightarrow \lfloor \alpha^{15}\rfloor = \lfloor1364 + (- \beta^{15})\rfloor = 1364 + \lfloor-\beta^{15}\rfloor

Also 0 < β < 1 0 < β 15 < 1 β 15 = 0 α 15 = 1364 0 < -\beta < 1 \Rightarrow 0 < -\beta^{15} < 1 \Rightarrow \lfloor-\beta^{15}\rfloor = 0 \Rightarrow \lfloor \alpha^{15}\rfloor = 1364 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...