⎣ ⎢ ⎢ ⎢ ( 2 1 + 5 ) 1 5 ⎦ ⎥ ⎥ ⎥ = ?
Notation:
⌊
⋅
⌋
denotes the
floor function
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let α = 2 1 + 5 and β = 2 1 − 5 ; We proceed to show that α 1 5 + β 1 5 is an integer.
Notice that α and β are the roots of the quadratic equation x 2 − x − 1 = 0 i.e
α 2 = α + 1 . . . ( 1 ) and β 2 = β + 1 . . . ( 2 ) . Multiplying ( 1 ) by α n − 2 and ( 2 ) by β n − 2 for some integer n ≥ 3 we get:
α n = α n − 1 + α n − 2 and β n = β n − 1 + β n − 2 ⇒ α n + β n = ( α n − 1 + β n − 1 ) + ( α n − 2 + β n − 2 )
Define L k = α k + β k for natural k . Now L 1 = 1 , L 2 = 3 and L n = L n − 1 + L n − 2 for n ≥ 3 .(This sequence is called Lucas Sequence.)
The sequence so formed is 1 , 3 , 4 , 7 , 1 1 , 1 8 , 2 9 , 4 7 , 7 6 , 1 2 3 , 1 9 9 , 3 2 2 , 5 2 1 , 8 4 3 , 1 3 6 4 , 2 2 0 7 , . . . whose 15th term is 1364. Hence L 1 5 = α 1 5 + β 1 5 = 1 3 6 4 .
Now, α 1 5 = 1 3 6 4 − β 1 5 ⇒ ⌊ α 1 5 ⌋ = ⌊ 1 3 6 4 + ( − β 1 5 ) ⌋ = 1 3 6 4 + ⌊ − β 1 5 ⌋
Also 0 < − β < 1 ⇒ 0 < − β 1 5 < 1 ⇒ ⌊ − β 1 5 ⌋ = 0 ⇒ ⌊ α 1 5 ⌋ = 1 3 6 4 .
Problem Loading...
Note Loading...
Set Loading...
Similar to Arpan Mathur 's approach.
Note that φ = 2 1 + 5 is the golden ratio. Hence φ 1 = 1 + 5 2 = 2 5 − 1 ⟹ φ − φ 1 = 1 . Then we have:
( φ − φ 1 ) 2 φ 2 − 2 + φ 2 1 φ 2 + φ 2 1 ( φ − φ 1 ) ( φ 2 + φ 2 1 ) φ 3 − φ + φ 1 − φ 3 1 φ 3 − φ 3 1 ( φ 3 − φ 3 1 ) 2 φ 6 − 2 + φ 6 1 φ 6 + φ 6 1 ( φ 3 − φ 3 1 ) ( φ 6 + φ 6 1 ) φ 9 − φ 3 + φ 3 1 − φ 9 1 φ 9 − φ 9 1 ( φ 6 + φ 6 1 ) ( φ 9 − φ 9 1 ) φ 1 5 + φ 3 − φ 3 1 − φ 1 5 1 φ 1 5 − φ 1 5 1 ⌊ φ 1 5 ⌋ = 1 2 = 1 = 3 = 1 × 3 = 3 = 3 + 1 = 4 = 1 6 = 1 6 = 1 6 + 2 = 1 8 = 4 × 1 8 = 7 2 = 7 2 + 4 = 7 6 = 1 8 × 7 6 = 1 3 6 8 = 1 3 6 8 − 4 = 1 3 6 4 = 1 3 6 4 Since − 1 < φ 1 5 1 < 0