Solve without hit and trial

Algebra Level 3

If a a and b b are positive reals satisfying a + b = 1 a+b=1 . Find the minimum value of ( a + 1 a ) 2 + ( b + 1 b ) 2 (a+\frac{1}{a})^2+(b+\frac{1}{b})^2 .


The answer is 12.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Dec 4, 2015

A = ( a + 1 a ) 2 + ( b + 1 b ) 2 A=(a+\frac{1}{a})^2+(b+\frac{1}{b})^2 = a 2 + 1 a 2 + b 2 + 1 b 2 + 4 =a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4 = a 2 + 1 16 a 2 + b 2 + 1 16 b 2 + 15 16 ( 1 a 2 + 1 b 2 ) + 4 =a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}(\frac{1}{a^2}+\frac{1}{b^2})+4 We have a 2 + 1 16 a 2 1 2 a^2+\frac{1}{16a^2}\geq\frac{1}{2} b 2 + 1 16 b 2 1 2 b^2+\frac{1}{16b^2}\geq\frac{1}{2} 1 a 2 + 1 b 2 2 a b 8 \frac{1}{a^2}+\frac{1}{b^2}\geq\frac{2}{ab}\geq 8 because ( a + b ) 2 4 a b 1 a b 4 (a+b)^2\geq 4ab\Leftrightarrow\frac{1}{ab}\geq 4 Therefore A 1 + 4 + 15 2 A\geq 1+4+\frac{15}{2} A 12.5 x = 12.5 \Leftrightarrow A\geq 12.5\Longrightarrow x=12.5 The equality holds when a = b = 1 2 a=b=\frac{1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...