Solving a Radical Equation

Algebra Level 3

We have that the following expression 84 + 30 3 + 5 84 18 3 = N \sqrt{84 + 30\sqrt{3} } + 5 \sqrt{ 84 - 18 \sqrt{3} } = N , where N N is a positive integer. What is the value of N N ?


The answer is 48.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Riccardo Zanotto
May 20, 2014

We have ( 3 + 5 3 ) 2 = 84 + 30 3 \left(3+5\sqrt{3}\right)^2=84+30\sqrt{3}

and ( 9 3 ) 2 = 84 18 3 \left(9-\sqrt{3}\right)^2 = 84-18\sqrt{3} .

So N = 84 + 30 3 + 5 84 18 3 = 3 + 5 3 + 5 9 3 = 3 + 5 3 + 45 5 3 = 48 \begin{aligned} N & = \sqrt{84+30\sqrt{3}}+5\sqrt{84-18\sqrt{3}}\\ & = |3+5\sqrt{3}|+5|9-\sqrt{3}|=3+5\sqrt{3}+45-5\sqrt{3}=48 \end{aligned}

Most solutions neglected to explain that they chose the positive square root, especially since we have some negative signs around.

Other solutions proceeded by repeated squaring to get rid of the square roots.

Calvin Lin Staff - 7 years ago
Sherry Sarkar
May 20, 2014

We split up the problem into two parts. 84 + 30 3 \sqrt{84 + 30 \sqrt{3}} and 5 ( 84 18 3 5( \sqrt{84 - 18 \sqrt{3}} .

We solve 5 ( 84 18 3 ) 5(\sqrt{84 - 18 \sqrt{3}}) by molding it into a perfect square. Notice we can break down the expression 84 18 3 \sqrt{84 - 18 \sqrt{3}} into 81 + 3 2 ( 9 ) ( 3 ) \sqrt{ 81 + 3 - 2(9)(\sqrt{3}) } . This turns out to be ( 9 3 ) 2 (9 - \sqrt{3}) ^2 . Putting it back into the original expression, we get 5 ( ( 9 3 ) 2 ) 5(\sqrt{(9 - \sqrt{3})^2}) which is 45 5 3 45 - 5 \sqrt{3} .

We solve the second part of the equation the same way. We know to work have to work with 5 3 5 \sqrt{3} to get an integer so we break down the expression into ( 75 + 9 + 2 × 3 × ( 5 3 ) \sqrt{(75 + 9 + 2 \times 3 \times (5 \sqrt{3})} . This turns into ( 3 + 5 3 ) 2 \sqrt{(3 + 5 \sqrt{3})^2} which is 3 + 5 3 3 + 5 \sqrt{3} .

Add these two final expressions together and we get 45 5 3 45 - 5 \sqrt{3} + 3 + 5 3 3 + 5 \sqrt{3} . This cleans up nicely to equal 48 48 .

N = 84 + 30 3 + 5 84 18 3 = N =\sqrt{84+30\sqrt{3}} + 5\sqrt{84-18\sqrt{3}}= 3 2 + 2.3.5 3 + ( 5 3 ) 2 + 5 9 2 2.9. 3 + ( 3 ) 2 = \sqrt{3^2 + 2.3.5\sqrt{3} + (5\sqrt{3})^2} + 5\sqrt{9^2-2.9.\sqrt{3} + (\sqrt{3})^2}= ( 3 + 5 3 ) 2 + 5 ( 9 3 ) 2 = 3 + 5 3 + 5 ( 9 3 ) = 48 \sqrt{(3+5\sqrt{3})^2}+5\sqrt{(9-\sqrt{3})^2} =3+5\sqrt{3} + 5(9-\sqrt{3})=48 .

Norlan Dazo
May 20, 2014

\sqrt{84+30 \cdot \sqrt{3}} can be written as: \sqrt{9+75+30 \cdot \sqrt{3}} \sqrt{{5 \cdot \sqrt{3}}^2+30 \cdot \sqrt{3} +3^2} which is a perfect square trinomial that can be factored as \sqrt{{5 \cdot \sqrt {3} +3}^2} then cancel the radical 5 \cdot \sqrt {3} +3

the same as the other term: it can be simplify as 5 \cdot \sqrt{{9 -\sqrt{3}}^2} then 5 \cdot {9 -\sqrt{3}} then add the two terms: the 5 \cdot \sqrt {3} will be canceled so the answer is 45 +3 = 48

Ding Yue
May 20, 2014

Squaring both side, we have N^2 = 84+30 rt3+25 84-25 18 rt3 + 10 rt(84 84 -30 18 3+84 (30-18) rt3) N^2 = 26 84-420 rt3 + 10 rt(5436-1008 rt3) N^2 = 26 84-420 rt3 + 10 (12+42 rt3) N^2 = 2304 N=48

Patrick Lu
May 20, 2014

We square both sides to obtain N^{2} = 84 + 30\sqrt{3} + 25(84-18\sqrt{3}) + 10\sqrt{84^{2} + 30 * 84 \sqrt{3} - 18 * 84\sqrt{3} - 18 * 3 * 30}. We can simplify this to N^{2} - 2184 + 420\sqrt{3} = 60\sqrt{151 + 28\sqrt{3}}.

Squaring this result again, we obtain 5299056-1834560 \sqrt{3}-4368 N^{2}+840 \sqrt(3) N^{2}+N^{4} = 60^2(151+28\sqrt{3}).

Solving this quartic, we obtain (N-48)(N+48)(N^{2}+840\sqrt{3} - 2064). N is positive, thus N = 48.

Calvin Lin Staff
May 13, 2014

Solution 1: We can complete the square for both the terms: 84 + 30 3 = 9 + 30 3 + 75 = ( 3 + 5 3 ) 2 84 + 30\sqrt{3} = 9 + 30\sqrt{3} + 75 = (3 + 5\sqrt{3})^2 and 84 18 3 = 81 18 3 + 3 = ( 9 3 ) 2 84 - 18\sqrt{3} = 81 - 18\sqrt{3} + 3 = (9 - \sqrt{3})^2 . Since square roots are positive, we have N = 84 + 30 3 + 5 84 18 3 = ( 3 + 5 3 ) 2 + 5 ( 9 3 ) 2 = ( 3 + 5 3 ) + 5 ( 9 3 ) = 48 \begin{aligned} N &= \sqrt{84 + 30\sqrt{3} } + 5 \sqrt{ 84 - 18 \sqrt{3} } \\ &= \sqrt { (3+ 5 \sqrt{3})^2 } + 5 \sqrt{ (9 - \sqrt{3} )^2 } \\ &= (3 + 5 \sqrt{3} ) + 5 ( 9 -\sqrt{3} ) \\ &= 48 \\ \end{aligned}

Solution 2: We guess that 84 + 30 3 = ( a + b 3 ) 2 = a 2 + 3 b 2 + 2 a b 3 84+30\sqrt{3} = (a + b \sqrt{3})^2 = a^2 + 3b^2 + 2 ab \sqrt{3} , which gives 84 = a 2 + 3 b 2 84 = a^2 + 3b^2 and 30 = 2 a b 30 = 2ab . Substituting the second equation into the first gives a 2 + 3 ( 15 a ) 2 = 84 a^2 + 3 (\frac {15}{a})^2 = 84 a 4 84 a 2 + 3 225 = 0 \Rightarrow a^4 - 84 a^2 + 3 \cdot 225 = 0 ( a 2 9 ) ( a 2 75 ) = 0 \Rightarrow (a^2-9)(a^2-75)=0 . This has solutions a = ± 3 , ± 5 3 a = \pm 3, \pm 5\sqrt{3} . We choose a = 3 a=3 and get b = 30 2 × 3 = 5 b= \frac {30}{2\times 3}= 5 . Hence, 84 + 30 3 = ( 3 + 5 3 ) 2 84+30\sqrt{3} = (3 + 5 \sqrt{3})^2

Similarly, we guess that 84 18 3 = ( c d 3 ) 2 = c 2 + 3 d 2 2 c d 3 84 - 18\sqrt{3} =(c-d\sqrt{3})^2 = c^2 + 3d^2 - 2cd \sqrt{3} , which gives 84 = c 2 + 3 d 2 84=c^2 +3d^2 and 18 = 2 c d 18=2cd . Substituting the second equation into the first gives c 2 + 3 ( 9 c ) 2 = 84 c^2 + 3(\frac {9}{c})^2=84 c 4 84 c 2 + 3 81 = 0 \Rightarrow c^4 - 84 c^2 + 3\cdot 81 =0 ( c 2 81 ) ( c 2 3 ) = 0 \Rightarrow (c^2-81)(c^2-3)=0 . This has solutions c = ± 9 , ± 3 c=\pm 9, \pm \sqrt{3} . We choose c = 9 c=9 and get d = 18 2 × 9 = 1 d = \frac {18}{2\times 9} = 1 . hence 84 18 3 = ( 9 3 ) 2 84 - 18\sqrt{3} = (9 - \sqrt{3})^2 .

Since square roots are positive, we have N = 84 + 30 3 + 5 84 18 3 = ( 3 + 5 3 ) 2 + 5 ( 9 3 ) 2 = ( 3 + 5 3 ) + 5 ( 9 3 ) = 48 \begin{aligned} N &= \sqrt{84 + 30\sqrt{3} } + 5 \sqrt{ 84 - 18 \sqrt{3} } \\ &= \sqrt { (3+ 5 \sqrt{3})^2 } + 5 \sqrt{ (9 - \sqrt{3} )^2} \\ &= (3 + 5 \sqrt{3} ) + 5 ( 9 -\sqrt{3} ) \\ &= 48 \\ \end{aligned}

Assume 84 + 30 3 a n d 84 18 3 \color{#D61F06}{84+30\sqrt{3}\;and\;84-18\sqrt{3}} to be perfect squares.First solve for 84 + 30 3 \color{#3D99F6}{84+30\sqrt{3}} : ( a + b ) 2 = a + b + 2 a b = 84 + 30 3 { a + b = 84 2 a b = 30 3 a b = 675 \color{#20A900}{(\sqrt{a}+\sqrt{b})^2=a+b+2\sqrt{ab}=84+30\sqrt{3}\\ \begin{cases} a+b=84\\2\sqrt{ab}=30\sqrt{3}\rightarrow ab=675\end{cases}} Solving for a , b a,b gives us a = 3 , b = 5 3 \color{#624F41}{a=3,b=5\sqrt{3}} .So 84 + 30 3 = ( 3 + 5 3 ) 2 \color{burntorange}{84+30\sqrt{3}=(3+5\sqrt3)^2} .So the first radical simplifies to 3 + 5 3 \color{#69047E}{3+5\sqrt3} .Solve for 84 18 3 \color{midnightblue}{84-18\sqrt3} : ( a b ) 2 = a + b 2 a b = 84 18 3 { a + b = 84 2 a b = 18 3 a b = 243 \color{redviolet}{(\sqrt{a}-\sqrt{b})^2=a+b-2\sqrt{ab}=84-18\sqrt{3}\\ \begin{cases} a+b=84\\ -2\sqrt{ab}=-18\sqrt{3}\rightarrow ab=243\end{cases}} Solving,we get a = 3 , b = 9 \color{#EC7300}{a=3,b=9} .So second radical is ( 3 9 ) 2 \color{#D61F06}{\sqrt{(\sqrt{3}-9)^2}} .As using these values of a , b a,b will not give an integral solution,so the second radical is ( 9 3 ) 2 \color{#D61F06}{\sqrt{(9-\sqrt{3})^2}} because ( x y ) 2 = ( y x ) 2 \color{#69047E}{(x-y)^2=(y-x)^2} .So the question simplifies to 3 + 5 3 + 5 ( 9 3 ) = 3 + 45 + 5 3 5 3 = 48 \color{burntorange}{3+5\sqrt{3}+5(9-\sqrt{3})=3+45+5\sqrt{3}-5\sqrt{3}=\boxed{48}}

( x y ) 2 = ( y x ) 2 x 2 2 x y + y 2 = y 2 2 x y + x 2 (x-y)^2=(y-x)^2\\x^2-2xy+y^2=y^2-2xy+x^2

Abdur Rehman Zahid - 6 years, 6 months ago
Yvanne Cuesta
May 20, 2014

sqrt 3 is approx 1.7 when multiplied to 30, approx 45 18, approx 27

84+45= 129. sqrt of this is > 12 84-27= 57. 5 sqrt is > 7 5

the sum should be greater that 35+12= 47 so, 48

Anthony Georgilas
May 20, 2014

48

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...