Solving an Inverse-Trigonometric Limit!

Calculus Level 5

lim n [ 1 n 2 1 i < j n tan 1 ( i n ) tan 1 ( j n ) ] \large{\lim_{n \to \infty} \left[ \dfrac{1}{n^2} \sum_{1 \leq i < j \leq n} \tan^{-1} \left ( \dfrac{i}{n} \right) \tan^{-1} \left ( \dfrac{j}{n} \right) \right] }

If the above limit can be expressed as:

( π A ln ( B ) ) C 2 D \dfrac{\left( \pi^A - \ln(B) \right)^C}{2^D}

where A , B , C , D A,B,C,D are positive integers, then find the value of A + B + C + D A+B+C+D .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Jul 29, 2015

L = lim n [ 1 n 2 1 i < j n tan 1 ( i n ) tan 1 ( j n ) ] L = \lim_{n \to \infty} \left[ \dfrac{1}{n^2} \sum_{1 \leq i < j \leq n} \tan^{-1} \left ( \dfrac{i}{n} \right) \tan^{-1} \left ( \dfrac{j}{n} \right) \right]

lim n 1 2 n 2 [ ( i = 1 n tan 1 ( i n ) ) 2 ( i = 1 n ( tan 1 ( i n ) ) 2 ) ] \Rightarrow \lim_{n \to \infty} \dfrac{1}{2n^2} \left[ \left( \sum_{i=1}^n \tan^{-1}\left(\dfrac{i}{n}\right)\right)^2 - \left( \sum_{i=1}^n \left(\tan^{-1}\left(\dfrac{i}{n}\right)\right)^2\right) \right]

= 1 2 ( 0 1 tan 1 ( x ) d x ) 2 1 2 n 0 1 ( ( tan 1 ( x ) ) 2 ) d x = \dfrac12 \left( \int_0^1 \tan^{-1}(x) \ dx \right)^2 - \dfrac{1}{2n} \int_0^1 \left(\left(\tan^{-1}(x)\right)^2\right)\ dx

Since n n \to \infty , we obtain:

L = 1 2 ( 0 1 tan 1 ( x ) d x ) 2 = 1 2 ( π ln ( 4 ) 4 ) 2 L= \dfrac12 \left( \int_0^1 \tan^{-1}(x) \ dx \right)^2 = \dfrac12 \left(\dfrac{\pi - \ln(4)}{4} \right)^2

So A = 1 , B = 4 , C = 2 , D = 5 , A + B + C + D = 12 A=1, B=4, C=2, D=5, A+B+C+D = \boxed{12} .

How u have written the 2nd step

jumana umrethwala - 5 years, 6 months ago

Log in to reply

Newton's Identities .

Pi Han Goh - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...