20 unknowns in one equation?

Algebra Level 5

Let x 1 , x 2 , , x 20 x_1, x_2,\ldots,x_{20} be real numbers satisfying

m = 1 20 m x m m 2 = 1 2 m = 1 20 x m . \large \sum_{m=1}^{20} m \sqrt{x_m - m^2} = \frac12 \sum_{m=1}^{20} x_m.

It is given that there is only one unique solution to the 20-tuple, ( x 1 , x 2 , , x 20 ) (x_1,x_2,\ldots,x_{20}) . Find the value of x 1 + x 2 + + x 20 x_1 + x_2 + \cdots + x_{20} .


The answer is 5740.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Otto Bretscher
Nov 26, 2015

Note that x 1 x 2 \sqrt{x-1}\leq \frac {x}{2} , with equality for x = 2 x=2 . Now k = 1 20 k x k k 2 = k = 1 20 k 2 x k k 2 1 k = 1 20 k 2 x k 2 k 2 = k = 1 20 x k 2 \sum_{k=1}^{20} k\sqrt{x_k-k^2}=\sum_{k=1}^{20} k^2\sqrt{\frac{x_k}{k^2}-1}\leq \sum_{k=1}^{20} k^2\frac{x_k}{2k^2} =\sum_{k=1}^{20}\frac{x_k}{2} with equality for x k = 2 k 2 x_k=2k^2 and k = 1 20 x k = 2 k = 1 20 k 2 = 2 2870 = 5740 \sum_{k=1}^{20}x_k=2\sum_{k=1}^{20}k^2=2*2870=\boxed{5740}

Ahmed Arup Shihab
Nov 28, 2015

Given,

m = 1 20 m x m m 2 = 1 2 m = 1 20 x m m = 1 20 x m m = 1 20 2 m x m m 2 = 0 m = 1 20 ( x m 2 m x m m 2 ) = 0 m = 1 20 { ( x m m 2 ) 2 m x m m 2 + m 2 } = 0 m = 1 20 ( x m m 2 m ) 2 = 0 \large\sum _{ m=1 }^{ 20 } m\sqrt { x_{ m }-m^{ 2 } } =\frac { 1 }{ 2 } \large\sum _{ m=1 }^{ 20 } x_{ m }\\ \Rightarrow \sum _{ m=1 }^{ 20 } x_{ m }-\sum _{ m=1 }^{ 20 } 2m\sqrt { x_{ m }-m^{ 2 } } =0\\ \Rightarrow \sum _{ m=1 }^{ 20 } (x_{ m }-2m\sqrt { x_{ m }-m^{ 2 } } )=0\\ \Rightarrow \sum _{ m=1 }^{ 20 } \{ (x_{ m }-m^{ 2 })-2m\sqrt { x_{ m }-m^{ 2 } } +{ m }^{ 2 }\} =0\\ \Rightarrow \sum _{ m=1 }^{ 20 } (\sqrt { x_{ m }-m^{ 2 } } -m)^{ 2 }=0

Therefore every term is equal zero. That means,

x m m 2 m = 0 \sqrt { x_{ m }-m^{ 2 } } -m=0 , for m = 1 , 2 , 3 , . . . . . . . , 20 \\ m=1,2,3,.......,20

x m = 2 m 2 \Rightarrow x_{ m }=2m^{ 2 }

m = 1 20 x m = m = 1 20 2 m 2 = 2 × 20 ( 20 + 1 ) ( 2 × 20 + 1 ) 6 = 5740 \Rightarrow \large\sum _{ m=1 }^{ 20 }x_{ m }=\large\sum _{ m=1 }^{ 20 }2m^{ 2 }=2\times \frac { 20(20+1)(2\times 20+1) }{ 6 }=\boxed{5740}

Alan Guo
Nov 26, 2015

Define y i = x i i 2 y_i = x_i - i^2 .

Then the equation can be re-expressed as i = 1 20 i y i = i = 1 20 y i + i 2 2 \sum_{i=1}^{20}i\sqrt{y_i} = \sum_{i=1}^{20}\frac{y_i+i^2}{2}

It is obvious, then, that each term of the sum corresponds to a term in the other sum in the AM-GM inequality: y i + i 2 2 y i i 2 = i y i \frac{y_i+i^2}{2} \geq \sqrt{y_i \cdot i^2} = i\sqrt{y_i}

Therefore equality only occurs when y i = i 2 y_i = i^2 , and hence the sought for sum is equivalent to: i = 1 20 y i + i 2 = 2 i = 1 20 i 2 \sum_{i=1}^{20}y_i+i^2 = 2 \sum_{i=1}^{20}i^2 = 2 ( 20 ) ( 20 + 1 ) ( 2 20 + 1 ) 6 = 2 \dfrac{(20)(20+1)(2\cdot 20 +1)}{6} = 5740 = 5740

Same way. Nice solution

Shreyash Rai - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...