Solving for a parameter t t

Calculus Level 4

Let

sin ( θ ) + cos ( λ ) = 4 t + 6 \sin(\theta) + \cos(\lambda) = 4t + 6

cos ( θ ) + sin ( λ ) = 3 t + 2 \cos(\theta) + \sin(\lambda) = 3t + 2 .

If t 0 f ( x ) f ( t x ) + f ( x ) d x = α β \displaystyle\int_{t}^{0} \dfrac{f(x)}{f(t - x) + f(x)} dx = \dfrac{\alpha}{\beta} , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 2, 2021

To prove: a b f ( x ) f ( a + b x ) + f ( x ) d x = b a 2 \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx = \dfrac{b - a}{2}

Let I = a b f ( x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx and u = a + b x u = a + b - x

I = a b f ( a + b u ) f ( u ) + f ( a + b u ) d u \implies I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - u)}{f(u) + f(a + b - u)} du

Since u u is a dummy variable we can replace u u by x x to obtain:

I = a b f ( a + b x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(x) + f(a + b - x)} dx

Adding I = a b f ( x ) f ( a + b x ) + f ( x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(x)}{f(a + b - x) + f(x)} dx and I = a b f ( a + b x ) f ( x ) + f ( a + b x ) d x I = \displaystyle\int_{a}^{b} \dfrac{f(a + b - x)}{f(x) + f(a + b - x)} dx

2 I = a b d x = b a I = b a 2 \implies 2I = \displaystyle\int_{a}^{b} dx = b - a \implies \boxed{I = \dfrac{b - a}{2}} .

( sin ( θ ) + cos ( λ ) ) 2 = ( 4 t + 6 ) 2 (\sin(\theta) + \cos(\lambda))^2 = (4t + 6)^2

( cos ( θ ) + sin ( λ ) ) 2 = ( 3 t + 2 ) 2 (\cos(\theta) + \sin(\lambda))^2 = (3t + 2)^2

Adding the two equations above \implies

2 + 2 sin ( θ + λ ) = 25 t 2 + 60 t + 40 = ( 5 t + 6 ) 2 + 4 2 + 2\sin(\theta + \lambda) = 25t^2 + 60t + 40 = (5t + 6)^2 + 4

and 0 2 + 2 sin ( θ + λ ) 4 0 ( 5 t + 6 ) 2 + 4 4 0 \leq 2 + 2\sin(\theta + \lambda) \leq 4 \implies 0 \leq (5t + 6)^2 + 4 \leq 4 \implies

0 ( 5 t + 6 ) 2 0 ( 5 t + 6 ) 2 = 0 5 t + 6 = 0 t = 6 5 0 \leq (5t + 6)^2 \leq 0 \implies (5t + 6)^2 = 0 \implies 5t + 6 = 0 \implies t = -\dfrac{6}{5}

Now using t = 6 5 I = 6 5 0 f ( x ) f ( 6 5 x ) + f ( x ) d x = 3 5 = α β t = -\dfrac{6}{5} \implies I = \displaystyle\int_{-\frac{6}{5}}^{0} \dfrac{f(x)}{f(-\dfrac{6}{5} - x) + f(x)} dx = \dfrac{3}{5} = \dfrac{\alpha}{\beta}

α + β = 8 \implies \alpha + \beta = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...