Solving For Sides I

Algebra Level 3

The equation

( x 5 ) ( x 12 ) ( x 13 ) = 30 (x-5)(x-12)(x-13)=30

has three real solutions, r 1 , r_1, r 2 , r_2, and r 3 . r_3. If a triangle with sides of r 1 , r_1, r 2 , r_2, and r 3 r_3 has area A , A, give A 2 . A^2.


The answer is 450.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Colin Tang
May 10, 2014

Expanding, we get x 3 30 x 2 + 281 x 780 = 30 x^3 - 30x^2 + 281x - 780 = 30 which becomes x 3 30 x 2 + 281 x 810 = 0 x^3 - 30x^2 + 281x - 810 = 0 . We know that r 1 , r 2 , r 3 r_1, r_2, r_3 are the three unique solutions to this equation and thus this equation must be equivalent to ( x r 1 ) ( x r 2 ) ( x r 3 ) = 0 (x - r_1)(x - r_2)(x - r_3) = 0 . Thus we have x 3 30 x 2 + 281 x 810 = ( x r 1 ) ( x r 2 ) ( x r 3 ) = 0 x^3 - 30x^2 + 281x - 810 = (x - r_1)(x - r_2)(x - r_3) = 0 which expands to x 3 30 x 2 + 281 x 810 = x 3 ( r 1 + r 2 + r 3 ) x 2 + ( r 1 r 2 + r 1 r 3 + r 2 r 3 ) x r 1 r 2 r 3 x^3 - 30x^2 + 281x - 810 = x^3 - (r_1 + r_2 + r_3)x^2 + (r_1r_2 + r_1r_3 + r_2r_3)x - r_1r_2r_3 . Setting the coefficients of x 3 , x 2 , x , 1 x^3, x^2, x, 1 on both sides equal to each other, we have r 1 + r 2 + r 3 = 30 , r 1 r 2 + r 1 r 3 + r 2 r 3 = 281 , r 1 r 2 r 3 = 810 r_1 + r_2 + r_3 = 30, r_1r_2 + r_1r_3 + r_2r_3 = 281, r_1r_2r_3 = 810 .

We know that A = ( s ) ( s r 1 ) ( s r 2 ) ( s r 3 ) A = \sqrt{(s)(s - r_1)(s - r_2)(s - r_3)} by Heron's Formula and thus A 2 = ( s ) ( s r 1 ) ( s r 2 ) ( s r 3 ) A^2 = (s)(s - r_1)(s - r_2)(s - r_3) where s = r 1 + r 2 + r 3 2 s = \frac{r_1 + r_2 + r_3}{2} . By our above work, we have s = r 1 + r 2 + r 3 2 = 30 2 = 15 s = \frac{r_1 + r_2 + r_3}{2} = \frac{30}{2} = 15 . So A 2 = ( s ) ( s r 1 ) ( s r 2 ) ( s r 3 ) = ( 15 ) ( 15 r 1 ) ( 15 r 2 ) ( 15 r 3 ) = ( 15 ) ( r 1 r 2 r 3 + ( 15 ) ( r 1 r 2 + r 1 r 3 + r 2 r 3 ) ( 225 ) ( r 1 + r 2 + r 3 ) + 3375 = ( 15 ) ( 810 + ( 15 ) ( 281 ) ( 225 ) ( 30 ) + 3375 ) = ( 15 ) ( 810 + 4215 6750 + 3375 ) = ( 15 ) ( 30 ) = 450 A^2 = (s)(s - r_1)(s - r_2)(s - r_3) = (15)(15 - r_1)(15 - r_2)(15 - r_3) = (15)(-r_1r_2r_3 +(15)(r_1r_2 + r_1r_3 + r_2r_3) - (225)(r_1 + r_2 + r_3) + 3375 = (15)(-810 + (15)(281) - (225)(30) + 3375) = (15)(-810 + 4215 - 6750 + 3375) = (15)(30) = \boxed{450} .

Topics to research: Vieta's Formulas, Heron's Formula

I liked your solution more than the other solution. I had solved this question with the method used in the other solution, but it was not working in the next problem in this set. Your solution helped me solve that problem. Thanks!!

Shabarish Ch - 7 years, 1 month ago

Awesome solution :)

HariShankar PV - 7 years ago

use \dfrac instead of \frac

Sai Ram - 5 years, 10 months ago

an easier method would be to take ( x 5 ) ( x 12 ) ( x 13 ) 30 = P ( x ) (x-5)(x-12)(x-13)-30=P(x) and to see that p ( x ) = ( x r 1 ) ( x r 2 ) ( x r 3 ) p(x)=(x-r_1)(x-r_2)(x-r_3) we seek 15 ( ( 15 5 ) ( 15 12 ) ( 15 13 ) 30 ) = 15 ( 60 30 ) = 450 15((15-5)(15-12)(15-13)-30)=15(60-30)=450

Aareyan Manzoor - 5 years, 8 months ago
Pi Han Goh
May 9, 2014

Expanding and simplying gives x 3 30 x 2 + 281 x 810 = 0 x^3 - 30x^2 + 281x - 810 = 0 . Trial and error shows that x = 10 x = 10 is a solution. Factor it out gives ( x 10 ) ( x 2 20 x + 81 ) = 0 (x-10)(x^2- 20x+81) = 0 which yields the other two roots 10 ± 19 10 \pm \sqrt{19}

Let r 1 = 10 + 19 , r 2 = 10 19 , r 3 = 10 r_1 = 10 + \sqrt{19}, r_2 = 10 - \sqrt{19}, r_3 = 10

One of the variations of Heron's formula is A = 1 4 4 a 2 b 2 ( a 2 + b 2 c 2 ) 2 A = \frac {1}{4} \sqrt{ 4a^2 b^2 - (a^2 + b^2 - c^2)^2 } , then

A 2 = 1 16 ( 4 ( 1 0 2 19 ) 2 ( ( 10 + 19 ) 2 + ( 10 19 ) 2 1 0 2 ) 2 ) = 1 16 ( 26244 ( 2 ( 1 0 2 + 19 ) 100 ) 2 ) = 450 \begin{aligned} A^2 & = & \frac {1}{16} \left ( 4(10^2 - 19)^2 - \left ( (10 + \sqrt{19})^2 + (10 - \sqrt{19})^2 - 10^2 \right )^2 \right ) \\ & = & \frac {1}{16} \left ( 26244 - \left ( 2(10^2 + 19) - 100 \right )^2 \right ) \\ & = & \boxed{450} \\ \end{aligned}

I hadn't seen that variation of Heron's formula before. Certainly comes in handy here. Nicely done!

Matt Enlow - 7 years, 1 month ago

I like more if the Heron's formula expressed in this form A = s ( s a ) ( s b ) ( s c ) A=\sqrt{s(s-a)(s-b)(s-c)} , where s = 1 2 ( a + b + c ) s=\frac{1}{2}(a+b+c)

Kho Yen Hong - 7 years, 1 month ago

Yes ,That is the correct way to do it,and answer is correct.Thanks. K.K.GARG,India

Krishna Garg - 6 years, 11 months ago
Saurabh Mallik
May 12, 2014

We need to solve the LHS of the equation to get the values of x x .

( x 5 ) ( x 12 ) ( x 13 ) = x 3 30 x 2 + 281 x 810 (x-5)(x-12)(x-13)=x^{3}-30x^{2}+281x-810

By using remainder theorem, we will find the value of x x .

Let p ( x ) = x 3 30 x 2 + 281 x 810 = 0 p(x)=x^{3}-30x^{2}+281x-810=0

p ( 10 ) = 1 0 3 30 × 1 0 2 + 281 × 10 810 p(10)=10^{3}-30\times10^{2}+281\times10-810

p ( 10 ) = 1000 3000 + 2810 810 p(10)=1000-3000+2810-810

p ( 10 ) = 3810 3810 p(10)=3810-3810

p ( 10 ) = 0 p(10)=0

So, one value of x = 10 x = 10

So, ( x 10 ) (x-10) is a factor of ( x 3 30 x 2 + 281 x 810 ) (x^{3}-30x^{2}+281x-810)

( x 10 ) ( x 2 20 x + 81 ) = 0 (x-10)(x^{2}-20x+81)=0

So, the two other roots are 10 + 19 10+\sqrt{19} and 10 19 10-\sqrt{19}

Now sides of triangle are: r 1 = 10 r_{1}=10 , r 2 = 10 + 19 r_{2}=10+\sqrt{19} and r 3 = 10 19 r_{3}=10-\sqrt{19}

Now, Area ( A ) = s ( s r 1 ) ( s r 2 ) ( s r 3 ) (A) = \sqrt{s(s-r_{1})(s-r_{2})(s-r_{3})} where s = r 1 + r 2 + r 3 2 s=\frac{r_{1}+r_{2}+r_{3}}{2}

s = 10 + ( 10 + 19 ) + ( 10 19 ) 2 s=\frac{10+(10+\sqrt{19})+(10-\sqrt{19})}{2}

s = 30 2 = 15 s=\frac{30}{2}=15

Now, A = s ( s r 1 ) ( s r 2 ) ( s r 3 ) A = \sqrt{s(s-r_{1})(s-r_{2})(s-r_{3})}

A 2 = s ( s r 1 ) ( s r 2 ) ( s r 3 ) A^{2} = s(s-r_{1})(s-r_{2})(s-r_{3})

A 2 = 15 ( 15 10 ) ( 15 ( 10 + 19 ) ) ( 15 ( 10 19 ) ) A^{2} = 15(15-10)(15-(10+\sqrt{19}))(15-(10-\sqrt{19}))

A 2 = 15 ( 15 10 ) ( 15 10 19 ) ( 15 10 + 19 ) A^{2} = 15(15-10)(15-10-\sqrt{19})(15-10+\sqrt{19})

A 2 = 15 × 5 ( 5 19 ) ( 5 + 19 ) A^{2} = 15\times5(5-\sqrt{19})(5+\sqrt{19})

A 2 = 75 × ( 5 2 ( 19 ) 2 ) A^{2} = 75\times(5^{2}-(\sqrt{19})^{2})

A 2 = 75 × ( 25 19 ) A^{2} = 75\times(25-19)

A 2 = 75 × 6 A^{2} = 75\times6

A 2 = 450 A^{2} = 450

So, A 2 = 450 A^{2}=450

Thus, the answer is: A 2 = 450 A^{2}=\boxed{450}

Sai Ram
Jul 28, 2015

By expanding , we get x 3 30 x 2 + 281 x 810 = 0. x^3-30x^2+281x-810 = 0.

By trial and error method , 10 10 is a root.Therefore x 10 x-10 is a factor.

By dividing,we get , ( x 10 ) ( x 2 20 x + 81 ) = 0 (x-10)(x^2-20x+81) = 0 ,which yields the other two roots 10 + 19 10+\sqrt{19} and 10 19 . 10-\sqrt{19}.

Now , r 1 = 10 , r 2 = 10 + 19 , r 3 = 10 19 . r_1 = 10 , r_2 = 10+\sqrt{19} , r_3 = 10-\sqrt{19}.

Now, A = s ( s r 1 ) ( s r 2 ) ( s r 3 ) A=\sqrt{s(s-r_1)(s-r_2)(s-r_3)} , where s = r 1 + r 2 + r 3 2 s=\dfrac{r_1+r_2+r_3}{2}

s = 10 + ( 10 + 19 ) + ( 10 19 ) 2 = 15. s=\dfrac{10+(10+\sqrt{19})+(10-\sqrt{19}) }{2} = 15.

Therefore , A = 15 ( 15 10 ) ( 15 ( 10 + 19 ) ) ( 15 ( 10 19 ) ) A=\sqrt{15(15-10)(15-(10+\sqrt{19}))(15-(10-\sqrt{19}))}

A 2 = 15 ( 5 ) ( 5 19 ) ( 5 + 19 ) A^2=15(5)(5-\sqrt{19})(5+\sqrt{19})

A 2 = 75 ( 5 2 ( 19 ) 2 ) A^2=75(5^2-(\sqrt{19})^2)

A 2 = 75 ( 25 19 ) = 75 6 = 450 A^2=75(25-19)=75*6= \boxed{450}

Therefore the required answer is 450 . \boxed{450} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...