Solving Integrals 1

Calculus Level 3

The value of the integral 3 6 x 9 x + x d x = A B \int_3^6 \frac{\sqrt {x}}{\sqrt{9-x}+\sqrt{x}} dx =\frac{A}{B}

What is the value of A + B = ? A+B=? , where A A and B B are positive coprime numbers.

JEE 2006

7 3 10 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 15, 2019

I = 3 6 x 9 x + x d x Using identity a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 3 6 ( x 9 x + x + 9 x x + 9 x ) d x = 1 2 3 6 d x = x 2 3 6 = 3 2 \begin{aligned} I & = \int_3^6 \frac {\sqrt x}{\sqrt{9-x}+\sqrt x}\ dx & \small \color{#3D99F6} \text{Using identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_3^6 \left(\frac {\sqrt x}{\sqrt{9-x}+\sqrt x} + \frac {\sqrt {9-x}}{\sqrt x + \sqrt{9-x}}\right) dx \\ & = \frac 12 \int_3^6 dx = \frac x2 \ \bigg|_3^6 = \frac 32 \end{aligned}

Therefore, A + B = 3 + 2 = 5 A+B = 3+2 = \boxed{5} .

@Hana Wehbi , you have to mention that A A and B B are coprime positive integers, because 6 4 \dfrac 64 , 1.8 1.2 \dfrac {1.8}{1.2} , and 4.2 2.8 \dfrac {4.2}{2.8} are all equal to the integral. Then all 3, 5, 7, and 10 are solutions.

Chew-Seong Cheong - 1 year, 11 months ago

Ok, l will, no problem.

Hana Wehbi - 1 year, 11 months ago

@Chew-Seong Cheong

You have forgotten to put 1/2 on the third line

Isaac YIU Math Studio - 1 year, 10 months ago

Log in to reply

Thanks. I have added it.

Chew-Seong Cheong - 1 year, 10 months ago

Substitution x = 9 u x = 9 - u and renaming u x u \rightarrow x will show us that

I = 3 6 x 9 x + x d x = 3 6 9 x 9 x + x d x I = \int_3^6 \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx = \int_3^6 \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x}} dx

Then, sum up the two representations for the same integral to get

2 I = 3 6 ( x 9 x + x + 9 x 9 x + x ) d x = 3 6 9 x + x 9 x + x d x = 3 6 d x = 3. 2I = \int_3^6 \left( \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} + \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x}} \right) dx = \int_3^6 \frac{\sqrt{9-x} + \sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx = \int_3^6 dx = 3.

x 9 x + x d x 1 4 ( 2 x 2 ( x 9 ) x + 9 log ( 9 2 x ) + 18 tanh 1 ( x 9 x ) ) \int \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} \, dx \Rightarrow \frac{1}{4} \left(2 x-2 \sqrt{-(x-9) x}+9 \log (9-2 x)+18 \tanh ^{-1}\left(\frac{\sqrt{x}}{\sqrt{9-x}}\right)\right)

Evaluated at x = 3 x=3 : 1 4 ( 6 2 + 6 + 9 log ( 6 2 + 9 ) ) \frac{1}{4} \left(-6 \sqrt{2}+6+9 \log \left(6 \sqrt{2}+9\right)\right)

Evaluated at x = 6 x=6 : 3 2 + 3 + 9 4 log ( 6 2 + 9 ) -\frac{3}{\sqrt{2}}+3+\frac{9}{4} \log \left(6 \sqrt{2}+9\right)

The difference is 3 2 \frac32 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...