Solving Integrals 2

Calculus Level 3

Let I = 0 1 sin x x d x and J = 0 1 cos x x d x I=\int_0^1\frac{\sin x}{\sqrt{x}} dx \text{ and } J=\int_0^1\frac{\cos x}{\sqrt{x}}dx .

Then which of the following is true?

I > 2 3 I>\frac{2}{3} and J > 2 J>2 I < 2 3 I<\frac{2}{3} and J < 2 J<2 I > 2 3 I>\frac{2}{3} and J < 2 J<2 I < 2 3 I<\frac{2}{3} and J > 2 J>2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Jul 15, 2019

Consider:

I = 0 1 sin x x d x I = \int_{0}^{1}\frac{\sin{x}}{\sqrt{x}}dx Implies: I = 2 0 1 sin x 2 x d x I = 2\int_{0}^{1}\frac{\sin{x}}{2\sqrt{x}}dx Taking x = z 2 x = z^2 leads to: d x = 2 z d z dx = 2zdz . Changing the variables of integration gives: I = 2 0 1 sin ( z 2 ) d z I = 2\int_{0}^{1}\sin(z^2)dz

By performing a series expansion of sin ( z 2 ) \sin(z^2) gives: I = 2 0 1 ( z 2 z 6 3 ! + z 10 5 ! z 14 7 ! . . . ) d z I = 2\int_{0}^{1}\left(z^2 - \frac{z^6}{3!} +\frac{z^{10}}{5!} - \frac{z^{14}}{7!} ...\right)dz

I = 2 ( 1 3 1 7.3 ! + 1 11.5 ! 1 15.7 ! . . . ) 0.62 ( < 0.66 ) I = 2\left(\frac{1}{3} - \frac{1}{7.3!} + \frac{1}{11.5!} - \frac{1}{15.7!}...\right) \approx 0.62(<0.66)

I < 2 3 \boxed{I < \frac{2}{3}}

The same procedure can be repeated for the integral defined as:

J = 0 1 cos x x d x J = \int_{0}^{1}\frac{\cos{x}}{\sqrt{x}}dx Implies: J = 2 0 1 cos x 2 x d x J = 2\int_{0}^{1}\frac{\cos{x}}{2\sqrt{x}}dx Taking x = z 2 x = z^2 leads to: d x = 2 z d z dx = 2zdz . Changing the variables of integration gives: J = 2 0 1 cos ( z 2 ) d z J = 2\int_{0}^{1}\cos(z^2)dz

By performing a series expansion of cos ( z 2 ) \cos(z^2) gives: J = 2 0 1 ( 1 z 4 2 ! + z 8 4 ! z 12 6 ! . . . ) d z J = 2\int_{0}^{1}\left(1 - \frac{z^4}{2!} +\frac{z^{8}}{4!} - \frac{z^{12}}{6!} ...\right)dz

J = 2 ( 1 1 5.2 ! + 1 9.4 ! 1 13.6 ! . . . ) 1.809 ( < 2 ) J = 2\left(1 - \frac{1}{5.2!} + \frac{1}{9.4!} - \frac{1}{13.6!}...\right) \approx 1.809(<2)

J < 2 \boxed{J < 2}

Chew-Seong Cheong
Jul 17, 2019

I = 0 1 sin x x d x Let x = u 2 d x = 2 u d u = 0 1 2 sin ( u 2 ) d u Since sin ( u 2 ) = u 2 u 6 3 ! + u 10 5 ! < 0 1 2 u 2 d u = 2 3 \begin{aligned} I & = \int_0^1 \frac {\sin x}{\sqrt x} dx & \small \color{#3D99F6} \text{Let }x = u^2 \implies dx = 2u\ du \\ & = \int_0^1 2 \sin (u^2)\ du & \small \color{#3D99F6} \text{Since }\sin (u^2) = u^2 - \frac {u^6}{3!} + \frac {u^{10}}{5!} - \cdots \\ & < \int_0^1 2u^2 \ du = \frac 23 \end{aligned}

J = 0 1 cos x x d x Let x = u 2 d x = 2 u d u = 0 1 2 cos ( u 2 ) d u Since cos ( u 2 ) = 1 u 4 2 ! + u 8 4 ! < 0 1 2 d u = 2 \begin{aligned} J & = \int_0^1 \frac {\cos x}{\sqrt x} dx & \small \color{#3D99F6} \text{Let }x = u^2 \implies dx = 2u\ du \\ & = \int_0^1 2 \cos (u^2)\ du & \small \color{#3D99F6} \text{Since }\cos (u^2) = 1 - \frac {u^4}{2!} + \frac {u^8}{4!} - \cdots \\ & < \int_0^1 2 \ du = 2 \end{aligned}

Therefore the answer is I < 2 3 and J < 2 \boxed{I < \frac 23 \text{ and }J < 2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...