Solving linear ODE using separation of variables

Calculus Level 2

Find the general solution of the following linear differential equation: y + y tan x = sin 2 x {y}^{\prime} + y\tan x = \sin 2x

Use c c as the constant of integration.

y ( x ) = c tan x 2 sin x y(x)=c \tan x - 2 \sin x y ( x ) = c cos x 2 cos 2 x y(x)=c \cos x - 2 {\cos}^{2} x y ( x ) = c sin x tan 2 x y(x)=c \sin x - {\tan}^{2} x y ( x ) = c tan x 2 sin 2 x y(x)=c \tan x - 2 {\sin}^{2} x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I'm not sure if this counts as separable variables, but is how I solved it: y + y tan ( x ) = 2 sin ( x ) cos ( x ) sec ( x ) y + sec ( x ) tan ( x ) y = 2 sin ( x ) y'+y\tan(x)=2\sin(x)\cdot \cos(x) \Rightarrow \sec(x)y'+\sec(x)\cdot \tan(x) y=2\sin(x) d d x ( sec ( x ) y ) = 2 sin ( x ) sec ( x ) y = 2 cos ( x ) + C \Rightarrow \frac{d}{dx}(\sec(x)y)=2\sin(x) \Rightarrow \sec(x)y=-2\cos(x)+C y = C cos ( x ) cos 2 ( x ) \Rightarrow y= C\cos(x)-\cos^{2}(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...