Solving the series

Calculus Level 3

Recall that
e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + . e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots. Then what is the value of 2 3 ! + 4 5 ! + 6 7 ! + 2 1 ! + 4 3 ! + 6 5 ! + ? \large \frac{\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \cdots}{\frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \cdots}\, ?


Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

e 2 2 \frac{e^2}{2} 1 e \frac{1}{e} 1 e 2 \frac{1}{e^2} 2 e 3 \frac{2}{e^3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Naren Bhandari
Feb 18, 2017

Evaluating the numerator as :- 2 3 ! + 4 5 ! + 6 7 ! + \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \cdots

3 1 3 ! + 5 1 5 ! + 7 1 7 ! + \frac{3-1}{3!} + \frac{5-1}{5!} + \frac{7-1}{7!} + \cdots

3 3 ! 1 3 ! + 5 5 ! 1 5 ! + 7 7 ! 1 7 ! + \frac{3}{3!} - \frac{1}{3!} + \frac{5}{5!} - \frac{1}{5!} + \frac{7}{7!} - \frac{1}{7!}+ \cdots

1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! 1 7 ! + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} +\cdots

1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! 1 7 ! + 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} +\cdots

= e 1 = e^{-1}

Since e 1 = 1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + 1 6 ! 1 7 ! + e^{-1} = 1 - \frac{1}{1!}+\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} +\cdots

Same as Evaluting the denominator as

2 1 ! + 4 3 ! + 6 5 ! + \frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \cdots

1 + 1 1 ! + 3 + 1 3 ! + 5 + 1 5 ! + \frac{1+1}{1!} + \frac{3+1}{3!} + \frac{5+1}{5!} + \cdots

1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + 1 6 ! + 1+ \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} +\frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \cdots

= e =e

Therefore,

e 1 e = 1 e 2 \frac{e^{-1}}{e} = \boxed{\frac{1}{e^2}}

Moderator note:

The solution uses the "trick" that n n ! \frac{ n } { n!} simplifies to 1 ( n 1 ) ! \frac{1}{(n-1)!} .

In a similar vein, can you evaluate i = 1 n i × i ! \sum_{i=1}^n i \times i ! as a telescoping sum?

Nice solution! I like how you split each fraction as sum/difference of two fractions. What motivated you to split the fractions the way you did?

Pranshu Gaba - 4 years, 3 months ago

S n = i = 1 N i × i ! = 1.1 ! + 2.2 ! + 3.3 ! + 4.4 ! + 5.5 ! + 6.6 ! + N . N ! S_n = \sum_{i=1}^N i\times i! = 1.1! + 2.2! + 3.3! + 4.4! + 5.5! + 6.6! +\cdots N.N!

S n = i = 1 N = 1 + 4 + 18 + 96 + 600 + 4370 + N . N ! S_n = \sum_{i=1}^N = 1 + 4 + 18 + 96 + 600 + 4370 + \cdots N.N!

S n = ( 2 1 ) + ( 6 2 ) + ( 24 6 ) + ( 120 24 ) + ( 720 120 ) + ( 5040 720 ) + + ( n + 1 ) ! ( n 1 ) ! S_n = (2-1) + (6-2) + (24-6) + (120-24) + (720-120) + (5040 -720) +\cdots + (n+1)! -(n-1)!

S n = ( 2 ! 1 ! ) + ( 3 ! 2 ! ) + ( 4 ! 3 ! ) + ( 5 ! 4 ! ) + ( 6 ! 5 ! ) + ( 7 ! 6 ! ) + + ( ( n + 1 ) ! ( n 1 ) ! ) S_n = (2!-1!) +(3! -2!) + (4! -3!) + (5! -4!) + (6!-5!) + (7!-6!) + \cdots + \left((n+1)! - (n-1)! \right)

S n = 1 ! + ( 2 ! 2 ! ) + ( 3 ! 3 ! ) + ( 4 ! 4 ! ) + ( 5 ! 5 ! ) + + ( n 1 ) ! ( n 1 ) ! + ( n + 1 ) ! S_n = -1! + (2! -2!) +(3! -3!) + (4! -4!) + (5!-5!) +\cdots +( n-1)! - (n-1)! + (n+1)!

Since all the terms get cancelled except 1 -1 and ( n + 1 ) ! (n+1)! which shows that i = 1 N i × i \sum_{i=1}^N i\times i Is a telescoping series which is equal to

S n = ( n + 1 ) ! 1 S_n = (n+1)! -1

Naren Bhandari - 4 years, 3 months ago

Log in to reply

Last term should be ((n+1)! - (n)!) so that it cancel out with n! from the previous term. It shouldn't be ((n+1)! - (n-1)!).

Also typo in the first line in the solution for original question, (i+1)! = (i+1)(i!)

Bharath Kanigiri - 3 years, 2 months ago

@Pi Han Goh Thank you , Sir :)

Naren Bhandari - 4 years, 3 months ago

We can see that

( i + 1 ) ! = i ! ( i + 1 ) ! = i × i ! + i ! (i+1)! = i! (i+1)! =i\times i! + i!

Then

i × i ! = ( i + 1 ) ! i ! i\times i! = (i+1)! - i!

And we have that

i = 1 n i × i ! = i = 1 n ( ( i + 1 ) ! i ! ) \sum_{i=1}^n i\times i! =\sum_{i=1}^n ((i+1)! - i!)

This is a telescopic sum, that is, only the values 1 ! -1! and ( n + 1 ) ! (n+1)! remain, the rest cancel out. So in the end

i = 1 n i × i ! = ( n + 1 ) ! 1 \sum_{i=1}^n i\times i! = (n+1)! - 1

Ana Echavarria - 4 years, 3 months ago

Log in to reply

Yup, that's just telescoping sum in disguise! Well done~~

Pi Han Goh - 4 years, 3 months ago

There's a typing mistake in the first line.

Atomsky Jahid - 4 years, 2 months ago

Did the same as Naren's solution.

Rohit Vijayvargiya - 3 years, 4 months ago

Thank you for the compliment :) Well, there is no such any motivation however for the numerator terms and denominator i just tried to expend so that i could get exact match with e x e^x series. Moreover, the term in numerator are the pattern of n n + 1 ) ! \frac{n}{n+1)!} and better spliting the factorial part i splited without factoriart part . :)

Naren Bhandari - 4 years, 3 months ago

Log in to reply

Good explanation~!

Pi Han Goh - 4 years, 3 months ago

WolframAlpha

(sum(2n/(2n+1)!), n=1 to infinity)/(sum(2n/(2n-1)!), n=1 to infinity)

= 0.135335

Impressive skill.

Marc Moncada - 3 years, 1 month ago

Let And after simplification, we get

Ah nice! It's nice that we can express the numerator and denominator as an expression of hyperbolic trigonometric functions!

Pi Han Goh - 4 years, 2 months ago

Aren't you missing the term 2 3 ! \frac2{3!} in your second line?

C . - 2 years, 9 months ago

Log in to reply

Yes, you're right.

Abdelghani ßoris - 2 years, 5 months ago

Practice L a T E X LaTEX soon.

A Former Brilliant Member - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...