Solving Triangles - Part 1

Geometry Level 5

In an acute triangle A B C ABC , the opposite sides of A \angle A , B \angle B , and C \angle C are a a , b b , and c c respectively. If b 2 = a ( a + c ) b^2=a(a+c) , what is the range of sin 2 A sin ( B A ) \dfrac{\sin^2A}{\sin(B-A)} ?

( 0 , 3 2 ) \left(0,\frac{\sqrt{3}}{2} \right) ( 1 2 , 3 2 ) \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right) ( 0 , 2 2 ) \left(0,\frac{\sqrt{2}}{2} \right) ( 1 2 , 2 2 ) \left(\frac{1}{2},\frac{\sqrt{2}}{2}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jul 27, 2019

Since the range of the function is in terms of the triangle's angles, we can set c = 1 c = 1 to make calculations easier. Then b 2 = a 2 + a b^2 = a^2 + a .

As an acute triangle, a 2 + b 2 > c 2 a^2 + b^2 > c^2 , b 2 + c 2 > a 2 b^2 + c^2 > a^2 , and a 2 + c 2 > b 2 a^2 + c^2 > b^2 . Using c = 1 c = 1 and b 2 = a 2 + a b^2 = a^2 + a , gives a 2 + a 2 + a > 1 a^2 + a^2 + a > 1 or a > 1 2 a > \frac{1}{2} , a 2 + a + 1 > a 2 a^2 + a + 1 > a^2 or a > 1 a > -1 , and a 2 + 1 > a 2 + a a^2 + 1 > a^2 + a or a < 1 a < 1 . Therefore, 1 2 < a < 1 \frac{1}{2} < a < 1 .

By law of cosines, cos B = a 2 + b 2 c 2 2 a c \cos B = \frac{a^2 + b^2 - c^2}{2ac} , and since b 2 = a 2 + a b^2 = a^2 + a and c = 1 c = 1 this simplifies to cos B = 1 a 2 a \cos B = \frac{1 - a}{2a} . Similarly, cos A = b 2 + c 2 a 2 2 b c \cos A = \frac{b^2 + c^2 - a^2}{2bc} which simplifies to cos A = a + 1 2 a \cos A = \frac{\sqrt{a + 1}}{2 \sqrt{a}} .

Using a trigonometric identity, sin 2 A = 1 cos 2 A = 1 ( a + 1 2 a ) 2 = 3 a 1 4 a \sin^2 A = 1 - \cos^2 A = 1 - (\frac{\sqrt{a + 1}}{2 \sqrt{a}})^2 = \frac{3a - 1}{4a} and sin 2 B = 1 cos 2 B = 1 ( 1 a 2 a ) 2 = ( 3 a 1 ) ( a + 1 ) 4 a 2 \sin^2 B = 1 - \cos^2 B = 1 - (\frac{1 - a}{2a})^2 = \frac{(3a - 1)(a + 1)}{4a^2} .

Plugging these sine and cosine values in the given function sin 2 A sin ( B A ) = sin 2 A sin B cos A cos B sin A \frac{\sin^2 A}{\sin(B - A)} = \frac{\sin^2 A}{\sin B \cos A - \cos B \sin A} gives 3 a 1 2 a \frac{\sqrt{3a - 1}}{2 \sqrt{a}} , which increases from 1 2 < a < 1 \frac{1}{2} < a < 1 . Therefore, the range is ( 3 1 2 1 2 1 2 , 3 1 1 2 1 ) (\frac{\sqrt{3 \cdot \frac{1}{2} - 1}}{2 \sqrt{\frac{1}{2}}}, \frac{\sqrt{3 \cdot 1 - 1}}{2 \sqrt{1}}) or ( 1 2 , 2 2 ) \boxed{(\frac{1}{2}, \frac{\sqrt{2}}{2})} .


Edit (Thanks to the author's hint in comments below):

Note that cos 2 A = 2 cos 2 A 1 = 2 ( a + 1 2 a ) 2 1 = 1 a 2 a = cos B \cos 2A = 2 \cos^2 A - 1 = 2(\frac{\sqrt{a + 1}}{2 \sqrt{a}})^2 - 1 = \frac{1 - a}{2a} = \cos B . Therefore, B = 2 A B = 2A , which makes the given expression sin 2 A sin ( B A ) = sin A \frac{\sin^2 A}{\sin(B - A)} = \sin A . Therefore to be an acute triangle, 30 ° < A < 45 ° 30° < \angle A < 45° , so the range is ( sin 30 ° , sin 45 ° ) (\sin 30°, \sin 45°) or ( 1 2 , 2 2 ) \boxed{(\frac{1}{2}, \frac{\sqrt{2}}{2})} .

I’m quite impressed on your calculation skills:) But actually there is an easier way - try to derive the relation of the angle and you will get ‘aha’ moment to what the given expression simplifies to. Actually, you may have noticed the simplified expression is equal to sinA.

Alice Smith - 1 year, 10 months ago

Log in to reply

Oh I see! B \angle B is twice A \angle A , so to be an acute triangle 30 ° < A < 45 ° 30° < \angle A < 45° , and since the expression is equal to sin A \sin A the range is ( sin 30 ° , sin 45 ° ) (\sin 30°, \sin 45°) or ( 1 2 , 2 2 ) (\frac{1}{2}, \frac{\sqrt{2}}{2}) . Nice problem!

David Vreken - 1 year, 10 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...