Solving Triangles - Part 2

Geometry Level 4

In A B C \triangle ABC , where the opposite edges of A \angle A , B \angle B , and C \angle C are a a , b b , and c c respectively, c = 2 c=2 and C = π 3 C=\frac{\pi}{3} . If 2 sin 2 A + sin ( 2 B + C ) = sin C 2\sin 2A+\sin(2B+C)=\sin C and the area of A B C \triangle ABC can be expressed as p q \frac p{\sqrt q} , where q q is square-free. Find p q 2 pq^2 .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adrian Wiśnios
Jul 29, 2019

The area of the triangle is 1 2 b c sin A = 1 2 a b sin C = 1 2 a c sin B \frac{1}{2}bc \sin A=\frac{1}{2}ab \sin C=\frac{1}{2}ac \sin B from which we have that

sin A = a c sin C \sin A=\frac{a}{c} \sin C and sin B = b c sin C \sin B=\frac{b}{c} \sin C . Given that c = 2 c=2 and C = π 3 C=\frac{\pi}{3} we have sin A = 3 a 4 \sin A=\frac{\sqrt{3}a}{4} and sin B = 3 b 4 \sin B=\frac{\sqrt{3}b}{4} . We need to find a b ab to use the formula above since we know sin C \sin C . The first equation comes from the cosines law

c 2 = a 2 + b 2 2 a b cos C c^{2}=a^{2}+b^{2}-2ab\cos C , this is a 2 + b 2 = a b + 4 ( 1 ) \boxed{a^{2}+b^{2}=ab+4} \,\ (1) .

Now simplify the given expression

2 sin 2 A = sin C sin ( 2 B + C ) 2 sin 2 A = 2 cos ( C + 2 B + C 2 ) sin ( C 2 B C 2 ) sin 2 A = cos ( B + C ) sin ( B ) 2 \sin 2A=\sin C-\sin (2B+C)\\ 2 \sin 2A=2\cos (\frac{C+2B+C}{2}) \sin (\frac{C-2B-C}{2}) \\ \sin 2A=\cos (B+C)\sin(-B)

Notice that A + B + C = π B + C = π A sin ( B + C ) = sin ( π A ) = sin A A+B+C=\pi \implies B+C=\pi -A \implies \sin (B+C)=\sin (\pi-A)=\sin A . Therefore cos ( B + C ) = ± 1 sin 2 A \cos(B+C)=\pm \sqrt{1-\sin ^{2} A}\\ and cos 2 ( B + C ) = cos 2 A \cos^{2}(B+C)=\cos^{2}A . Then squaring both sides of the equation above gives

sin 2 2 A = ( sin B ) 2 cos 2 A 4 sin 2 A cos 2 A = sin 2 B cos 2 A cos 2 A ( 4 sin 2 A sin 2 B ) = 0 ( cos 2 A ) ( 2 sin A sin B ) ( 2 sin A + sin B ) = 0 cos A = 0 o r 2 sin A = sin B o r 2 sin A = sin B \sin^{2} 2A=(-\sin B)^{2}\cos^{2} A\\ 4\sin^{2} A \cos^{2} A=\sin^{2} B\cos^{2} A\\ \cos^{2} A(4\sin^{2} A-\sin^{2} B)=0\\ (\cos^{2} A)(2\sin A-\sin B)(2\sin A+\sin B)=0\\\\ \cos A=0 \,\ or \,\ 2\sin A=\sin B \,\ or \,\ 2\sin A=-\sin B

In the first case A would be the right angle and the equation ( 1 ) (1) would give us that a 2 + b 2 = c 2 = 4 a^{2}+b^{2}=c^{2}=4 but a 2 + b 2 = a b + 4 a^{2}+b^{2}=ab+4 therefore a b = 0 t h e a r e a i s 0 ab=0 \implies the \,\ area \,\ is \,\ 0 The third case, though, would give us the negative value of a a or b b . So we have that

2 sin A = sin B 2 × 3 a 4 = 3 b 4 b = 2 a ( 2 ) 2\sin A=\sin B\\ 2 \times \frac{\sqrt{3}a}{4}=\frac{\sqrt{3}b}{4} \implies \boxed{b=2a} \,\ (2)

We can finally combine ( 1 ) (1) and ( 2 ) (2)

a 2 + 4 a 2 = a × 2 a + 4 a = 2 3 a^{2}+4a^{2}=a\times 2a+4 \implies a=\frac{2}{\sqrt{3}} and b = 4 2 b= \frac{4}{\sqrt{2}} .

The area of the triangle is 1 2 a b sin C = 1 2 × 2 3 × 4 3 × 3 2 = 2 3 \frac{1}{2}ab \sin C=\frac{1}{2}\times \frac{2}{\sqrt{3}}\times \frac{4}{\sqrt{3}}\times \frac{\sqrt{3}}{2}=\boxed{\frac{2}{\sqrt{3}}} . The final answer is therefore 2 × 3 2 = 18 2\times 3^{2}=18 . :)

Chew-Seong Cheong
Jul 27, 2019

2 sin 2 A + sin ( 2 B + C ) = sin C 2 sin 2 A + sin ( 2 ( π A C ) + C ) = sin C Given that C = π 3 2 sin 2 A + sin ( 5 3 π 2 A ) = 3 2 2 sin 2 A sin ( 2 A + π 3 ) = 3 2 2 sin 2 A 1 2 sin 2 A 3 2 cos 2 A = 3 2 3 2 sin 2 A 3 2 cos 2 A = 3 2 Divide by 3 throughout. 3 2 sin 2 A 1 2 cos 2 A = 1 2 sin ( 2 A π 6 ) = 1 2 2 A π 6 = π 6 A = π 6 \begin{aligned} 2\sin 2A + \sin (2B+C) & = \sin C \\ 2\sin 2A + \sin \left(2 \left(\pi - A - C\right)+C\right) & = \sin C & \small \color{#3D99F6} \text{Given that }C = \frac \pi 3 \\ 2\sin 2A + \sin \left(\frac 53 \pi - 2A \right) & = \frac {\sqrt 3}2 \\ 2\sin 2A - \sin \left(2A + \frac \pi 3 \right) & = \frac {\sqrt 3}2 \\ 2\sin 2A - \frac 12 \sin 2A - \frac {\sqrt 3}2\cos 2A & = \frac {\sqrt 3}2 \\ \frac 32 \sin 2A - \frac {\sqrt 3}2\cos 2A & = \frac {\sqrt 3}2 & \small \color{#3D99F6} \text{Divide by } \sqrt 3 \text{ throughout.} \\ \frac {\sqrt 3}2 \sin 2A - \frac 12\cos 2A & = \frac 12 \\ \sin \left(2A - \frac \pi 6\right) & = \frac 12 \\ 2A - \frac \pi 6 & = \frac \pi 6 \\ \implies A & = \frac \pi 6 \end{aligned}

B = π 2 \implies B = \frac \pi 2 , a = 2 3 a = \frac 2{\sqrt 3} and area of A B C \triangle ABC is 1 2 a c = 2 3 \frac 12 a c = \frac 2{\sqrt 3} . Therefore p q 2 = 18 pq^2 = \boxed {18} .

@Alice Smith , you cannot write "answer can be expressed as a b c \frac {a\sqrt b}c , because you have already used a a , b b , and c c as the sides of triangle.

Chew-Seong Cheong - 1 year, 10 months ago

Log in to reply

Oh, I will notice that next time. That’s an important point.

Alice Smith - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...