Solving Triangles - Part 5

Geometry Level 4

In A B C \triangle ABC , sin A \sin A , sin B \sin B , and sin C \sin C are successive terms of a geometric progression . What is the range of sin 2 B sin B + cos B \dfrac{\sin2B}{\sin B+\cos B} ?

( , 2 2 ] (-∞,\dfrac{\sqrt{2}}{2}] ( 0 , 3 3 2 ] (0,\dfrac{3-\sqrt{3}}{2}] ( 0 , 2 2 ] (0,\dfrac{\sqrt{2}}{2}] ( 1 , 2 ] (-1,\sqrt{2}]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Kent
Jul 31, 2019

For any x [ 0 , π 2 ] x \in [0, \frac { \pi }{ 2 } ] and the function f ( x ) = sin 2 x sin x + cos x f(x)=\frac { \sin {2x} }{ \sin {x}+\cos {x} } , the following is true:

0 f ( x ) 2 2 0\le f(x)\le \frac { \sqrt { 2 } }{ 2 }

Let's prove that: since x [ 0 , π 2 ] x \in [0, \frac { \pi }{ 2 } ] , then sin 2 x \sin { 2x } , sin x \sin { x } and cos x \cos { x } are positive. f ( x ) 0 f(x)\ge 0 proved. Let's find the maximum through derivative:

f ( x ) = 2 cos 2 x ( sin x + cos x ) sin 2 x ( cos x sin x ) ( sin x + cos x ) 2 f'(x)=\frac { 2\cos { 2x } \left( \sin { x } +\cos { x } \right) -\sin { 2x } \left( \cos { x } -\sin { x } \right) }{ { \left( \sin { x } +\cos { x } \right) }^{ 2 } }

To find the maximum we need to solve this equation:

f ( x ) = 0 2 cos 2 x ( sin x + cos x ) sin 2 x ( cos x sin x ) = 0 2 cos 2 x ( sin x + cos x ) = sin 2 x ( cos x sin x ) 2 ( cos 2 x sin 2 x ) ( sin x + cos x ) = 2 sin x cos x ( cos x sin x ) cos 2 x sin x + cos 3 x sin 3 x sin 2 x cos x = 2 sin x cos 2 x 2 cos x sin 2 x cos 3 x + sin 2 x cos x = cos 2 x sin x + sin 3 x cos x ( cos 2 x + sin 2 x ) = ( cos 2 x + sin 2 x ) sin x cos x = sin x x = π 4 , x [ 0 , π 2 ] f'(x)=0\\ 2\cos { 2x } \left( \sin { x } +\cos { x } \right) -\sin { 2x } \left( \cos { x } -\sin { x } \right) =0\\ 2\cos { 2x } \left( \sin { x } +\cos { x } \right) =\sin { 2x } \left( \cos { x } -\sin { x } \right) \\ 2\left( { \cos }^{ 2 }{ x }-{ \sin }^{ 2 }{ x } \right) \left( \sin { x } +\cos { x } \right) =2\sin { x } \cos { x } \left( \cos { x } -\sin { x } \right) \\ { \cos }^{ 2 }{ x }\sin { x } +{ \cos }^{ 3 }{ x }-{ \sin }^{ 3 }{ x }-{ \sin }^{ 2 }{ x }\cos { x } =2\sin { x } { \cos }^{ 2 }{ x }-2\cos { x } { \sin }^{ 2 }{ x }\\ { \cos }^{ 3 }{ x }+{ \sin }^{ 2 }{ x }\cos { x } ={ \cos }^{ 2 }{ x }\sin { x } +{ \sin }^{ 3 }{ x }\\ \cos { x } \left( { \cos }^{ 2 }{ x }+{ \sin }^{ 2 }{ x } \right) =\left( { \cos }^{ 2 }{ x }+{ \sin }^{ 2 }{ x } \right) \sin { x } \\ \cos { x } =\sin { x } \\ x=\frac { \pi }{ 4 } ,\quad x \in [0, \frac { \pi }{ 2 } ]

Then:

max f ( x ) = f ( π 4 ) = 2 2 \max { f(x) } =f(\frac { \pi }{ 4 } )=\frac { \sqrt { 2 } }{ 2 }

That means if we prove that 0 B π 2 0\le \angle B\le \frac { \pi }{ 2 } the problem is solved.

Since the sinuses of angles form successive terms of a geometric progression, we get:

{ sin A = 1 k sin B sin C = k sin B \begin{cases} \sin { A } =\frac { 1 }{ k } \cdot \sin { B } \\ \sin { C } =k\cdot \sin { B } \end{cases} , where k k is the common ratio.

Let's assume that the radius of the circumcircle equals 1. Then by sinus theorem:

a sin A = b sin B = c sin C = 2 R a 1 k sin B = b sin B = c k sin B = 2 \frac { a }{ \sin { A } } =\frac { b }{ \sin { B } } =\frac { c }{ \sin { C } } =2R\\ \frac { a }{ \frac { 1 }{ k } \cdot \sin { B } } =\frac { b }{ \sin { B } } =\frac { c }{ k\cdot \sin { B } } =2

And we have:

{ a = 2 k sin B b = 2 sin B c = 2 k sin B \begin{cases} a=\frac { 2 }{ k } \cdot \sin { B } \\ b=2\cdot \sin { B } \\ c=2k\cdot \sin { B } \end{cases}

Now we can use cosinus theorem:

b 2 = a 2 + c 2 2 a c cos B 4 sin 2 B = 4 k 2 sin 2 B + 4 k 2 sin 2 B 8 sin 2 B cos B 1 = 1 k 2 + k 2 2 cos B cos B = 1 2 k 2 + k 2 2 1 2 = 1 + k 4 k 2 2 k 2 cos B = ( k 2 1 2 ) 2 + 3 4 2 k 2 > 0 { b }^{ 2 }={ a }^{ 2 }+{ c }^{ 2 }-2ac\cos { B } \\ 4\sin ^{ 2 }{ B } =\frac { 4 }{ { k }^{ 2 } } \sin ^{ 2 }{ B } +4{ k }^{ 2 }\sin ^{ 2 }{ B } -8\sin ^{ 2 }{ B } \cos { B } \\ 1=\frac { 1 }{ { k }^{ 2 } } +{ k }^{ 2 }-2\cos { B } \\ \cos { B } =\frac { 1 }{ 2{ k }^{ 2 } } +\frac { { k }^{ 2 } }{ 2 } -\frac { 1 }{ 2 } =\frac { 1+{ k }^{ 4 }-{ k }^{ 2 } }{ 2{ k }^{ 2 } } \\ \cos { B } =\frac { { ({ k }^{ 2 }-\frac { 1 }{ 2 } ) }^{ 2 }+\frac { 3 }{ 4 } }{ 2{ k }^{ 2 } } >0

Thus, cos B > 0 \cos { B } >0 and B \angle B is in triangle which means B \angle B is acute.

Examples:

A C = 1 , f ( B ) = 2 2 , B = π 4 , k = 1 2 ( 1 + 2 + 2 2 1 ) AC=1, f(B)=\frac { \sqrt { 2 } }{ 2 } ,\quad \angle B=\frac { \pi }{ 4 } ,\quad k=\sqrt { \frac { 1 }{ 2 } (1+\sqrt { 2 } +\sqrt { 2\sqrt { 2 } -1 } ) }

A C = 1 , f ( x ) + 0 , B + 0 , k 1 + 5 2 AC=1, f(x)\rightarrow +0,\quad \angle B\rightarrow +0,\quad k\rightarrow \frac { 1+\sqrt { 5 } }{ 2 }

Isn't it cos B >= 1/2 from AM-GM inequality? I think we should have 0<B<= pi/6

희재 한 - 6 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...