Solving Triangles - Part 7

Geometry Level 3

In A B C \triangle ABC , B = 2 π 3 \angle B=\dfrac{2\pi}3 , D D is a point on A C AC so that B D BD bisects B \angle B and B D = 2 BD=2 .

What is the minimum area of A B C \triangle ABC ?

4 3 4\sqrt{3} 6 3 6\sqrt{3} 3 3 3\sqrt{3} 5 3 5\sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 30, 2019

Let B C = b BC = b and the altitude A E = h AE=h . Let D F DF be the altitude from D D to B C BC . Then B F = 1 BF = 1 and D F = 3 DF=\sqrt 3 . We note that A C E \triangle ACE and D C F \triangle DCF are similar. Therefore,

A E C E = D F C F h h 3 + b = 3 b 1 h = 3 b b 2 \begin{aligned} \frac {AE}{CE} & = \frac {DF}{CF} \\ \frac h{\frac h{\sqrt 3}+b} & = \frac {\sqrt 3}{b-1} \\ h & = \frac {\sqrt 3 b}{b-2} \end{aligned}

Therefore, the area of A B C \triangle ABC :

A = h b 2 = 3 b 2 2 ( b 2 ) = 3 2 ( ( b 2 ) 2 + 4 b 4 b 2 ) = 3 2 ( b 2 + 4 + 4 b 2 ) By AM-GM inequality: 3 2 ( 2 4 ( b 2 ) b 2 + 4 ) Equality occurs when b = 4 = 4 3 \begin{aligned} A_\triangle & = \frac {hb}2 = \frac {\sqrt 3b^2}{2(b-2)} \\ & = \frac {\sqrt 3} 2 \left(\frac {(b - 2)^2 + 4b - 4}{b-2}\right) \\ & = \frac {\sqrt 3} 2 \left({\color{#3D99F6}b-2} + 4 + \frac 4{\color{#3D99F6}b-2} \right) & \small \color{#3D99F6} \text{By AM-GM inequality: } \\ & \ge \frac {\sqrt 3} 2 \left({\color{#3D99F6}2\sqrt{\frac {4(b-2)}{b-2}}} + 4 \right) & \small \color{#3D99F6} \text{Equality occurs when }b=4 \\ & = \boxed{4\sqrt 3} \end{aligned}


Reference : AM-GM inequality

@Alice Smith , backslash "\" is extensively used in LaTex. You can enter \triangle for \triangle , \angle \angle , \pi π \pi , \alpha α \alpha , \beta β \beta , \in \in , \cup \cup , \frac \pi 2 π 2 \frac \pi 2 (the braces { } are unnecessary), \frac {2\pi}3 2 π 3 \frac {2\pi}3 . Better to use "area of A B C \triangle ABC " instead of S A B C S_{\triangle ABC} because not all use S S to indicate area.

Chew-Seong Cheong - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...